
 1

Implementation of VirtualClock Scheduling Algorithm
in OPNET

Nazy Alborz and Ljiljana Trajkovic
School of Engineering Science

Simon Fraser University
Vancouver, British Columbia

Canada V5A 1S6
E-mail: {nalborz, ljilja}@cs.sfu.ca

http://www.ensc.sfu.ca/research/cnl

Abstract
In today’s high-speed packet networks that support various
applications with different service requirements, congestion
control is an important issue. One of the methods for
preventing congestion is packet scheduling. Packet scheduling
in routers can provide guaranteed performance in terms of
delay, delay jitter, packet loss, and throughput.

In this paper, we describe the OPNET model of an IP router
with a scheduling algorithm called VirtualClock. The
VirtualClock algorithm monitors the average transmission
rates of packet data flows. It also provides each flow with a
guaranteed throughput and a low queuing delay. We have
incorporated the VirtualClock algorithm into the OPNET
process model ip_output_iface. This process model executes
scheduling algorithms in the network layer of IP objects.

1 Introduction
One of the most significant promises in today’s integrated
services packet-switched networks (such as Internet) is
providing Quality of Service (QoS) guarantees [1]. These
networks are able to integrate applications with a wide range
of traffic characteristics. These applications range from video
conferencing with stringent QoS requirements, to best effort
applications with no required guarantees. In network
switching nodes, packets with different QoS requirements
interact with one another when they are multiplexed at the
same output port. If there is no control over these interactions,
they will degrade the performance of the network [2].

Packet scheduling algorithms in network routers and switches
can provide guaranteed QoS. Scheduling algorithms not only
allow packets from various traffic streams to be statistically
multiplexed, but also provide a protection between these
streams. The three main functions of packet scheduling
disciplines are to determine:
• which packets among different service classes get

transmitted
• when these packets get transmitted, and
• which packets get discarded in case of an overflow in

switch buffers.

These operations affect throughput, delay, and loss rate
performance parameters.

Packet scheduling mechanisms are classified into two
categories: work-conserving and non-work-conserving [3]. A
work-conserving scheduler is idle when there are no packets
waiting in the router’s queues. In a non-work-conserving
scheduler, each packet is assigned a time when it has to be
sent to the output interface. The scheduler remains idle and no
packet will be transmitted until the time when the next packet
is eligible.

In this paper we describe the implementation of a work-
conserving scheduling algorithm called VirtualClock [4]. The
algorithm is similar to the Weighted Fair Queuing (WFQ)
algorithm [1] that is currently implemented in OPNET [5].
The difference between the WFQ and VirtualClock algorithms
is that the VirtualClock simplifies the calculation of finish
times. Finish time is calculated and used by the scheduler
when choosing the next packet to be dequeued [6]. Other
advantages of the VirtualClock algorithm are:
• it provides per connection bandwidth allocation
• it guarantees protection between traffic flows.

This paper is organized as follows. In Section 2, we introduce
the VirtualClock [4] scheduling algorithm, its role, and its
functionality. In Section 3, we describe the implementation of
the algorithm in the IP layer process module of an IP-router
node model. The validity of the model through OPNET
simulations of a simple network is discussed in Section 4.
Section 5 presents the simulation results from a network with
various traffic sources, which employs VirtualClock
algorithm. We conclude with Section 6.

2 VirtualClock Algorithm
The idea behind the VirtualClock algorithm was derived from
Time Division Multiplexing (TDM) systems. A TDM system
eliminates interference among users because individual user
channels (flows) can transmit only during specific time slots.
The disadvantage of a TDM system is that users are limited to
constant data transmission rates and the channel capacity is
wasted whenever a slot is given to a flow that has no data to
send at that moment. The purpose of the VirtualClock
algorithm is to maintain the guaranteed throughput and
firewalls of a TDM system, while still achieving the statistical
multiplexing properties of packet switched networks.

 2

The algorithm makes the statistical data flow resemble a TDM
channel by assigning each data flow a “virtual clock.” Each
“virtual clock” advances one tick at every packet arrival from
a specific flow. The tick step is the mean packet inter-arrival
time that has been specified by the flow. Thus, each “virtual
clock” carries the expected arrival time of the packet. If a flow
sends packets according to its specified average rate, its
“virtual clock” follows real time. The algorithm stamps the
packets with their own “virtual clock” values and transmits the
packets in ascending order of these stamps. Nevertheless,
there is a major difference between a TDM system and a
network controlled by a VirtualClock scheduling algorithm.
The difference is that unlike TDM, a VirtualClock controlled
network can support data flows with distinct throughput rates.
The network reservation protocol determines how large a
share of bandwidth each flow needs on average. Then,
according to the flow’s reserved transmission rate, the
VirtualClock algorithm determines which packet should be
forwarded next in the case that there is more than one packet
waiting [4].

We consider the following parameters for each flowi entering
a switch in a network:
• ARi, average transmission rate (packets/sec)
• IRi, packet inter-arrival time (sec)
• AIi, average observation interval (sec). The AI value

should be chosen as: total transmitted data / AR. Its range
is: 1/AR ≤ AI ≤ total flow duration.

2.1 Inside the VirtualClock Algorithm
The algorithm uses two control variables for each flow,
Virtual Clock (VC) and auxiliary Virtual Clock (auxVC) [4].

The following two functions are performed by VirtualClock
algorithm:

Data forwarding:
• When the first packet is received from flowi, VCi and

auxVCi are both set to the real time.
• Upon receiving each packet from flowi,

a) Vticki ← 1/ARi
b) auxVCi ← max (real time, auxVCi)
c) auxVCi ← auxVCi + Vticki

 VCi ← VCi + Vticki
• Stamp the packet with auxVCi value.
• Insert the packet in its outgoing queue.
• Serve the packets according to their increasing stamp

values.

Flow monitoring:
The algorithm calculates a control variable: AIRi = ARi × AIi
for each flowi (in packets).

Upon receiving AIRi packets from flowi, the following
conditions are checked:

• If (VCi - real time) < T (a control threshold), then the
source of flowi is warned.

• If (VCi < real time), let VCi = real time.

Thus, the VC variable plays the role of a flow meter, and it is
increased according to the flow’s negotiated packet arrival
rate. Hence, the difference between a flow’s VC and the real
time shows how closely a flow is following its specified rate
[4].

By introducing a second parameter called auxiliary Virtual
Clock, the algorithm prevents flows from accumulating
credits. Consider the case when a source sends a burst of
packets after remaining idle for a while. In this situation,
although the VC value might fall behind the real time, the
usage of the auxiliary Virtual Clock will cause the packet’s
auxVC stamp to be updated with the real time. Thus, the traffic
burst will be interleaved with packets from other flows.
Therefore, the auxVC is used to order packets from distinct
flows. By serving packets in the order of their auxVC values,
the algorithm assures that the flows use the bandwidth
according to their specified packet arrival rates. Thus,
although nonconforming flows can use free bandwidth, they
cannot affect conforming flows.

3 VirtualClock Implementation
In this section we describe our implementation of the data
forwarding function of a VirtualClock algorithm in an IP
router. The algorithm is implemented in the ip_output_iface
process model, which is a child process of the IP layer process
model ip_rte_v4.

The ip_output_iface process is in charge of assigning separate
queues to various data flows entering the router and
scheduling packets out of the queues. The scheduling is
performed based on the VirtualClock algorithm or one of the
other scheduling mechanisms currently implemented in
OPNET: FIFO, Weighted Fair Queuing, Custom Queuing, and
Priority Queuing [5].

In our implementation, we have used the modified version of
the external files: oms_qm.c and ip_qos_support.c, ICI file:
ip_arp_v4. ici, and header file: oms_qm.h.

3.1 VirtualClock Process Model
We expanded and modified the state transition diagram of the
already existing OPNET process model ip_output_iface. The
state transition diagram of the VirtualClock algorithm consists
of four states: init, enqueue, dequeue, and idle, as shown in
Figure 1.

 3

Figure 1: State transition diagram of the VirtualClock
algorithm.

3.1.1 enqueue State
When a packet arrives from an upper layer process, it enters
the enqueue state. The enqueue state functions as follows:

Step 1. Get the incoming packet.
Step 2. Determine the queue to which the packet belongs
according to the flow of the incoming packet. The flow
recognition criteria are: packet source address, destination
address, incoming port number, outgoing port number, and
required Type of Service (ToS).
Step 3. Check whether the packet is the first packet of its
flow. This is performed by setting a Boolean flag for each
queue. The flag is set to true upon arrival of the very first
packet, and is checked every time a packet enters the enqueue
state. If the packet is the first packet of the flow, VCi and
auxVCi of the queue corresponding to flowi are initialized with
the real time.
Step 4. Get the ARi of flowi and calculate Vticki for the
packet’s queue.
Step 5. Advance VCi and auxVCi by Vticki and stamp the
packet with auxVCi. The stamping is implemented by using
OPNET’s data type called Interface Control Information (ICI).
ICI contains fields for user-defined parameters to be shared by
multiple entities in the network. After advancing the auxVC
for each packet, the auxVC value is saved in the
a_Virtual_Clock_Stamp field in the ICI named ip_arp_req_v4.
Then, the ICI is associated with the packet, and remains with it
as long as the packet is waiting in the queue. The
a_Virtual_Clock_Stamp field is accessed in the dequeue state
in order to choose the packet with the lowest auxVC value to
be sent to the output interface.
Step 6. If there are no packets waiting in other queues, the
packet is sent out immediately. Otherwise, it will remain in its
associated queue and the process control returns to the idle
state.

3.1.2 dequeue State
The packet enters the dequeue state when it is time for it to be
dequeued. The operations conducted in the dequeue state are:

Step 1. Send the packet to the network interface.
Step 2. Get the ICI named ip_arp_req_v4 associated with the
packet, and read its a_Virtual_Clock_Stamp field.
Step 3. If there are no packets in other queues, return to the
idle state. Otherwise, choose the next packet to be dequeued.
In order to select the correct packet to be serviced, check all
the queues by looking at the auxVC stamp value of the packets
located at the head of the queues. The packet with the lowest
auxVC stamp value is chosen as the next packet to be serviced.
In case that there is more than one packet with identical stamp
value, the priority is given to the packet from the queue with
the lowest index.
Step 4. Schedule the time at which the selected packet should
be serviced, and return to the idle state. This time is calculated
by dividing the packet size (in bits) by the link rate (in
bits/sec).

3.2 QoS Configuration Object
A new profile (VC Profile) for the VirtualClock algorithm was
also added in qos_attribute_definer process model of
OPNET’s QoS Configuration Object [7]. This enables users to
choose the suitable scheduling mechanism.

Users can define a queuing profile with an optional number of
queues, and can configure the queue attributes: Arrival Rate
(expected packet arrival rate of the flow entering the queue),
Maximum Queue Size, and Classification Scheme (a scheme
for categorizing packets to flows and assigning them to
queues).

4 Model Verification
In order to evaluate the performance of the VirtualClock
model, we have created the simple network model.

Figure 2: Simple network model for performance
verification of the VirtualClock algorithm.

This is an ideal scenario in which both sources are generating
packets according to their specified packet rates. The Ethernet
network consists of two clients sending traffic to associated
servers via switches and routers. Clients 1 and 2 generate
1,024 bytes IP packets at a constant rate of 10 and 5
packets/sec, respectively.

 4

All the nodes in the network are connected with 10BaseT links
with a 10 Mbps data rate. The only link in the network that has
a lower capacity is the link between Routers 1 and 2, which
was chosen to be a DS0 link with a 64 Kbps data rate. The
bottleneck link is positioned immediately before the output
interface of Router 1 where the VirtualClock scheduling
algorithm is implemented. Hence, we can observe the order in
which the packets are dequeued by the VirtualClock
algorithm.

Incoming packets from Clients 1 and 2 are destined for
Servers 1 and 2, respectively. The packets are sorted into two
distinct queues and ordered out of the queues according to
their specified packet rates.

In the VC profile of the IP QoS Configuration object, we
defined a new queuing profile named Flow Based. This profile
has two rows. Each row represents a queue with the following
parameter settings:
• Arrival Rate0 = 10, Queue Size0 = 500
• Arrival Rate1 = 5, Queue Size1 = 500.

Incoming packets from Client 1 are recognized as a flow and
are assigned to the first queue (Q0). Packets from the second
flow, coming from Client 2, are assigned to the second queue
(Q1). The following graphs are obtained as outputs of OPNET
simulations. Incoming traffic to queues Q0 and Q1 is shown in
Figure 3.

Figure 3: Incoming traffic to queues: Q0 (top) and Q1
(bottom), in (packets/sec) vs. time.

Figure 4 illustrates the VC stamp values of the packets in
queues Q0 and Q1, respectively. The stamp values are
calculated upon packet arrivals to the enqueue state of the
scheduling process. As expected, when a packet arrives to a
particular queue, the queue’s VC increases by 1/AR of the
particular queue (0.1 for Q0, and 0.2 for Q1), and the arriving
packet is stamped with the value VC.

Figure 5 shows the auxiliary Virtual Clock (auxVC) stamp
values of the packets in queues Q0 and Q1 that are sent to the
outgoing interface. We expect the VirtualClock algorithm to
be a fair algorithm that assigns the bandwidth fairly to the
flows according to their negotiated packet generation rates.
Because the specified arrival rate of the first flow is twice that
of the second flow, we expect that the scheduling algorithm
will send two packets from Q0 for each packet sent from Q1,
as illustrated in Figure 5.

Figure 4: Virtual Clock (VC) stamp vs. packet arrival time
(sec) for queues: Q0 (top) and Q1 (bottom).

Figure 5: Auxiliary Virtual Clock (auxVC) vs. packet
departure time (sec) for queues Q0 and Q1.

The outgoing traffic from queues Q0 and Q1, scheduled by the
VirtualClock algorithm, is shown in Figure 6.

5 Simulation Experiments
In order to evaluate the performance of the VirtualClock
algorithm we conducted simulations using OPNET version
7.0.B.

 5

Figure 6: Outgoing traffic from queues: Q0 (top) and Q1
(bottom), in (packets/sec) vs. time.

In this scenario, we consider two conforming and one
nonconforming sources. The first conforming source has
constant packet generation rate. The second conforming
source generates traffic with self-similar characteristics, which
fluctuates around its specified average packet arrival rate. The
nonconforming source generates packets with a constant rate.
For a short period of time, it conforms to its negotiated packet
generation rate. After this short period, the source decreases its
rate for a while in order to gather credits for sending a burst of
packets at a rate that is four times its expected rate. This
behavior for the nonconforming source is chosen so that we
could examine the reaction of the VirtualClock algorithm in
situations when a misbehaving source wants to use the credits
gained for sending a burst of traffic.

The network topology is similar to the topology shown in
Figure 2, with an additional source and destination. In this
scenario, we use three Ethernet clients to send traffic to three
Ethernet servers. All the nodes are connected with 10BaseT
links, except the DS0 link between Routers 1 and 2. The
specified packet arrival rates of Clients 1, 2, and 3 are 4, 2,
and 4 packets/sec, respectively. These rates are assigned in the
VC profile of the IP QoS Configuration object. In the VC
Profile, we defined a queuing profile Flow Based1 that
contains three rows. Each row represents a queue with the
following parameter settings:
• Arrival Rate0 = 4, Queue Size0 = 500
• Arrival Rate1 = 2, Queue Size1 = 500
• Arrival Rate2 = 4, Queue Size2 = 500.

Client 1 starts sending packets at time 20 sec. It generates
1,024 bytes IP packets at a constant rate of 4 packets/sec, and
stops at 555 sec. Client 2 also generates 1,024 bytes IP
packets. It begins generating traffic at constant rate of 2
packets/sec at 20 sec. At time = 142.5 sec, it reduces the traffic
rate and keeps on sending packets at rate of 0.5 packets/sec for
250 sec. At 392.5 sec, it increases its rate and continues

sending packets at a rate of 8 packets/sec until time 455 sec.
Client 3 is an OPNET ethernet_rpg_wkstn_adv source node
model. This source is chosen from OPNET’s Raw Packet
Generator (RPG) model [8]. RPG is a traffic source model that
is used to generate self-similar traffic [9]. The self-similar
traffic model is used to capture the fractal properties of
Internet traffic. Client 3 starts at 5 sec and sends traffic with
the following specifications:
• Average arrival rate = 4 (packets / sec)
• Hurst parameter = 0.9
• Fractal onset time scale = 0.1.

Figures 7 shows the incoming traffic from Clients 1, 2, and 3
to Router 1’s queues Q0, Q1, and Q3, respectively. Figures 8
shows the Virtual Clock (VC) stamp values of the packets in
queues Q0, Q1, and Q2. The slope of the (VC) graph for Qi is
calculated as: slopei = Vticki / (1/ ARi).

If a flow is conforming to its expected packet generation rate,
the values of Vtick and 1/AR are identical. Hence, its VC slope
is equal to 1. As it can be seen in the Figure 8 (top), flow0
adheres to its specified packet arrival rate. Thus, the slope of
the Virtual Clock graph is 1. Figure 8 (middle) shows that the
slope of the graph changes at instances when packet arrival
rate of the flow changes. For the periods during which traffic
has lower arrival rate (142.5 sec ­ 392.5 sec), Virtual Clock
line has slope < 1. For higher arrival rate periods (392.5 sec -
455 sec), we observe a steeper line with slope > 1. Figure 8
(bottom) shows that for a flow fluctuating around its specified
arrival rate, the Virtual Clock graph is close to a line with
slope 1.

Figure 9 shows the auxiliary Virtual Clock stamp values
(auxVC) of packets in queues Q0, Q1, and Q2. The role of this
variable is to prevent the flows from gathering credits by not
sending traffic for a period of time and then suddenly sending
a burst of traffic. This is achieved by upgrading the auxiliary
Virtual Clock value to the larger value between auxVC and
real time.

By comparing Figures 8 and 9, we see that the Virtual Clock
and auxiliary Virtual Clock graphs of packets coming to Q0
(top) and Q2 (bottom) have the same slope, because the flows
have been conforming to their expected sending rate. In
contrast, the traffic to Q1 reduces its rate at 142.5 sec. This is
shown as the difference between the slopes of the Virtual
Clock and auxiliary Virtual Clock in Figures 8 and 9 (bottom)
from 142.5 sec to 392 sec.

Figure 10 shows the auxiliary Virtual Clock (auxVC) stamp
values of the packets in queues Q0, Q1, and Q2 that are being
sent to the outgoing interface.

Figure 11 shows the outgoing traffic from queues Q0, Q1, and
Q2 of Router 1, after being scheduled by the VirtualClock
algorithm. In case the total link traffic does not exceed the

 6

link’s capacity, the algorithm allocates bandwidth to flows
according to their specified packet arrival rates. If there is no
available bandwidth, the traffic from a flow that is exceeding
its specified arrival rate will be queued and serviced with the
flow’s specified arrival rate. The packets are dropped when
the queue becomes full.

Figure 7: Incoming traffic to queues: Q0 (top), Q1 (middle),
and Q2 (bottom) in (packets/sec) vs. time.

Figure 8: Virtual Clock (VC) stamp vs. packet arrival time
(sec) for queues: Q0 (top), Q1 (middle), and Q2 (bottom).

It can be seen from Figures 7 and 11 (top) that since Client 1
is sending traffic according to its specified arrival rate of 4
packets/sec, the queue Q0 is served with the same rate.

As seen from Figures 7 and 11 (middle), traffic from Client 2
is serviced with its arrival rate (2 packets/sec) while it
conforms to its specified packet rate (until 142.5 sec). When
client starts sending packets with arrival rate of 8 packets/sec,

which is four times the expected rate, the VirtualClock
schedules packets with the flow’s expected packet rate (2
packets/sec). The total bandwidth is used by the three sources
until 555 sec, when Client 1 stops sending traffic. At that time,
part of the bandwidth will be freed and the traffic from Q1
will be serviced at a higher rate.

Figure 9: Auxiliary Virtual Clock (auxVC) stamp vs. packet
arrival time (sec) for queues: Q0 (top), Q1 (middle), and

Q2 (bottom).

Figure 10: Auxiliary Virtual Clock (auxVC) stamp vs. packet
departure time (sec) for queues: Q0 (top), Q1 (middle), and

Q2 (bottom).

As seen in Figures 7 and 11 (bottom), Client 3 generates self-
similar traffic. The Virtual Clock algorithm forwards packets
at rate of 4 packets/sec, which is the average traffic generation
rate of the source.

 7

Figure 11: Outgoing traffic from queues: Q0 (top), Q1
(middle), and Q2 (bottom) in (packets/sec) vs. time.

We have compared the functionality of the VC algorithm with
three algorithms already implemented in OPNET: WFQ, PQ,

Figure 12: Outgoing traffic after being scheduled by
scheduling algorithms: VC, WFQ, PQ, and CQ. Shown are

queues: Q0 (top), Q1 (middle), and Q2 (bottom) in
(packets/sec) vs. time.

and CQ. We used the same scenario as in Section 5 and we
repeated simulation experiment while employing different
scheduling algorithms in Router 1. The outgoing traffic from
queues Q1, Q2, and Q3 is shown in Figure 12. The graphs
show the OPNET simulation results from VC, WFQ, PQ, and
CQ algorithms.

6 Conclusion
In this paper we described the OPNET implementation of the
data forwarding function of the VirtualClock scheduling
algorithm. We described the modification in the OPNET’s
ip_output_iface scheduling process model used in the IP layer
of all IP objects. We verified the correctness of the algorithm
by simulating a simple network. We also used more complex
simulation scenarios to illustrate the functionality of the
algorithm.

Acknowledgment
The authors acknowledge with thanks the support of OPNET
Technologies, Inc. This research was funded by the Canadian
Foundation for Innovation Grant 910-99.

References
[1] Cisco Systems, Inc. documentation on QoS:
http://www.cisco.com/warp/public/732/Tech/quality.shtml.

[2] J. Walrand and P. Varaiya, High-performance Communi-
cation Networks, Second edition. San Francisco, CA: Morgan
Kaufman Publishers Inc., 2000, pp. 369 - 372.

[3] H. Zhang, “Service disciplines for guaranteed performance
service in packet-switching networks,” in Proc. of the IEEE,
vol. 83, no. 10, Oct. 1995.

[4] L. Zhang, “VirtualClock: a new traffic control algorithm
for packet switching networks,” in Proc. ACM SIGCOM, Sept.
1990.

[5] OPNET Technologies, Inc., Washington DC, OPNET
documentations on Configuring Applications and Profiles, The
Custom Application Model, Standard Network Applications,
and Simulation Methodology for the Analysis of QoS, July
2000.

[6] S. Keshav, An Engineering Approach to Computer
Networking. Reading, MA: Addison Wesley, 1998, pp. 209 -
263.

[7] OPNET Technologies, Inc., Washington DC, OPNET
documentation V.7.0.L.

[8] OPNET Technologies, Inc., Washington DC, OPNET
documentation on RPG model description, Feb. 2001.

[9] B. Ryo, “A tutorial on fractal traffic generators in OPNET
for Internet simulation,” OPNETWORK2000, Washington DC,
Aug. 2000.

