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Abstract 
In today’s high-speed packet networks that support various 
applications with different service requirements, congestion 
control is an important issue. One of the methods for 
preventing congestion is packet scheduling. Packet scheduling 
in routers can provide guaranteed performance in terms of 
delay, delay jitter, packet loss, and throughput.  
  
In this paper, we describe the OPNET model of an IP router 
with a scheduling algorithm called VirtualClock. The 
VirtualClock algorithm monitors the average transmission 
rates of packet data flows. It also provides each flow with a 
guaranteed throughput and a low queuing delay. We have 
incorporated the VirtualClock algorithm into the OPNET 
process model ip_output_iface. This process model executes 
scheduling algorithms in the network layer of IP objects. 
  
1   Introduction 
One of the most significant promises in today’s integrated 
services packet-switched networks (such as Internet) is 
providing Quality of Service (QoS) guarantees [1]. These 
networks are able to integrate applications with a wide range 
of traffic characteristics. These applications range from video 
conferencing with stringent QoS requirements, to best effort 
applications with no required guarantees. In network 
switching nodes, packets with different QoS requirements 
interact with one another when they are multiplexed at the 
same output port. If there is no control over these interactions, 
they will degrade the performance of the network [2]. 
 
Packet scheduling algorithms in network routers and switches 
can provide guaranteed QoS. Scheduling algorithms not only 
allow packets from various traffic streams to be statistically 
multiplexed, but also provide a protection between these 
streams. The three main functions of packet scheduling 
disciplines are to determine: 
• which packets among different service classes get 

transmitted 
• when  these packets get transmitted, and  
• which packets get discarded in case of an overflow in 

switch buffers. 
 
These operations affect throughput, delay, and loss rate 
performance parameters.  

Packet scheduling mechanisms are classified into two 
categories: work-conserving and non-work-conserving [3]. A 
work-conserving scheduler is idle when there are no packets 
waiting in the router’s queues. In a non-work-conserving 
scheduler, each packet is assigned a time when it has to be 
sent to the output interface. The scheduler remains idle and no 
packet will be transmitted until the time when the next packet 
is eligible. 
 
In this paper we describe the implementation of a work-
conserving scheduling algorithm called VirtualClock [4]. The 
algorithm is similar to the Weighted Fair Queuing (WFQ) 
algorithm [1] that is currently implemented in OPNET [5]. 
The difference between the WFQ and VirtualClock algorithms 
is that the VirtualClock simplifies the calculation of finish 
times. Finish time is calculated and used by the scheduler 
when choosing the next packet to be dequeued [6]. Other 
advantages of the VirtualClock algorithm are: 
• it provides per connection bandwidth allocation 
• it guarantees protection between traffic flows. 
 
This paper is organized as follows. In Section 2, we introduce 
the VirtualClock [4] scheduling algorithm, its role, and its 
functionality. In Section 3, we describe the implementation of 
the algorithm in the IP layer process module of an IP-router 
node model. The validity of the model through OPNET 
simulations of a simple network is discussed in Section 4. 
Section 5 presents the simulation results from a network with 
various traffic sources, which employs VirtualClock 
algorithm. We conclude with Section 6. 
  
2   VirtualClock Algorithm  
The idea behind the VirtualClock algorithm was derived from  
Time Division Multiplexing (TDM) systems. A TDM system 
eliminates interference among users because individual user 
channels (flows) can transmit only during specific time slots. 
The disadvantage of a TDM system is that users are limited to 
constant data transmission rates and the channel capacity is 
wasted whenever a slot is given to a flow that has no data to 
send at that moment. The purpose of the VirtualClock 
algorithm is to maintain the guaranteed throughput and 
firewalls of a TDM system, while still achieving the statistical 
multiplexing properties of packet switched networks.  
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The algorithm makes the statistical data flow resemble a TDM 
channel by assigning each data flow a “virtual clock.”  Each 
“virtual clock” advances one tick at every packet arrival from 
a specific flow. The tick step is the mean packet inter-arrival 
time that has been specified by the flow. Thus, each “virtual 
clock” carries the expected arrival time of the packet. If a flow 
sends packets according to its specified average rate, its 
“virtual clock” follows real time. The algorithm stamps the 
packets with their own “virtual clock” values and transmits the 
packets in ascending order of these stamps. Nevertheless, 
there is a major difference between a TDM system and a 
network controlled by a VirtualClock scheduling algorithm. 
The difference is that unlike TDM, a VirtualClock controlled 
network can support data flows with distinct throughput rates. 
The network reservation protocol determines how large a 
share of bandwidth each flow needs on average. Then, 
according to the flow’s reserved transmission rate, the 
VirtualClock algorithm determines which packet should be 
forwarded next in the case that there is more than one packet 
waiting [4]. 
 
We consider the following parameters for each flowi entering 
a switch in a network: 
• ARi, average transmission rate (packets/sec) 
• IRi, packet inter-arrival time (sec) 
• AIi, average observation interval (sec). The AI value 

should be chosen as: total transmitted data / AR. Its range 
is: 1/AR ≤ AI ≤ total flow duration. 

 
2.1   Inside the VirtualClock Algorithm 
The algorithm uses two control variables for each flow, 
Virtual Clock (VC) and auxiliary Virtual Clock (auxVC) [4].  
 
The following two functions are performed by VirtualClock 
algorithm: 
 
Data forwarding: 
• When the first packet is received from flowi, VCi and 

auxVCi are both set to the real time. 
• Upon receiving each packet from flowi, 

a) Vticki ← 1/ARi 
b) auxVCi ← max (real time, auxVCi) 
c) auxVCi ← auxVCi + Vticki 

   VCi ← VCi + Vticki  
• Stamp the packet with auxVCi value. 
• Insert the packet in its outgoing queue. 
• Serve the packets according to their increasing stamp 

values. 
 
Flow monitoring: 
The algorithm calculates a control variable: AIRi = ARi × AIi 
for each flowi (in packets). 
 
Upon receiving AIRi packets from flowi, the following 
conditions are checked: 

• If  (VCi - real time) < T (a control threshold), then the 
source of flowi is warned. 

• If  (VCi  < real time), let VCi = real time. 
 
Thus, the VC variable plays the role of a flow meter, and it is 
increased according to the flow’s negotiated packet arrival 
rate. Hence, the difference between a flow’s VC and the real 
time shows how closely a flow is following its specified rate 
[4]. 
 
By introducing a second parameter called auxiliary Virtual 
Clock, the algorithm prevents flows from accumulating 
credits. Consider the case when a source sends a burst of 
packets after remaining idle for a while. In this situation, 
although the VC value might fall behind the real time, the 
usage of the auxiliary Virtual Clock will cause the packet’s 
auxVC stamp to be updated with the real time. Thus, the traffic 
burst will be interleaved with packets from other flows. 
Therefore, the auxVC is used to order packets from distinct 
flows. By serving packets in the order of their auxVC values, 
the algorithm assures that the flows use the bandwidth 
according to their specified packet arrival rates. Thus, 
although nonconforming flows can use free bandwidth, they 
cannot affect conforming flows.  
 
3   VirtualClock Implementation 
In this section we describe our implementation of the data 
forwarding function of a VirtualClock algorithm in an IP 
router. The algorithm is implemented in the ip_output_iface 
process model, which is a child process of the IP layer process 
model ip_rte_v4. 
 
The ip_output_iface process is in charge of assigning separate 
queues to various data flows entering the router and 
scheduling packets out of the queues. The scheduling is 
performed based on the VirtualClock algorithm or one of the 
other scheduling mechanisms currently implemented in 
OPNET: FIFO, Weighted Fair Queuing, Custom Queuing, and 
Priority Queuing [5].   
 
In our implementation, we have used the modified version of 
the external files: oms_qm.c and ip_qos_support.c, ICI file: 
ip_arp_v4. ici, and header file: oms_qm.h. 
 
3.1   VirtualClock Process Model 
We expanded and modified the state transition diagram of the 
already existing OPNET process model ip_output_iface. The 
state transition diagram of the VirtualClock algorithm consists 
of four states: init, enqueue, dequeue, and idle, as shown in 
Figure 1. 
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Figure 1: State transition diagram of the VirtualClock 
algorithm. 

 

3.1.1   enqueue State 
When a packet arrives from an upper layer process, it enters 
the enqueue state. The enqueue state functions as follows: 
 
Step  1.  Get the incoming packet. 
Step 2. Determine the queue to which the packet belongs 
according to the flow of the incoming packet. The flow 
recognition criteria are: packet source address, destination 
address, incoming port number, outgoing port number, and 
required Type of Service (ToS).  
Step 3. Check whether the packet is the first packet of its 
flow. This is performed by setting a Boolean flag for each 
queue. The flag is set to true upon arrival of the very first 
packet, and is checked every time a packet enters the enqueue 
state. If the packet is the first packet of the flow, VCi and 
auxVCi of the queue corresponding to flowi are initialized with 
the real time. 
Step 4. Get the ARi of flowi and calculate Vticki for the 
packet’s queue.  
Step 5. Advance VCi and auxVCi by Vticki and stamp the 
packet with auxVCi. The stamping is implemented by using 
OPNET’s data type called Interface Control Information (ICI).  
ICI contains fields for user-defined parameters to be shared by 
multiple entities in the network. After advancing the auxVC 
for each packet, the auxVC value is saved in the 
a_Virtual_Clock_Stamp field in the ICI named ip_arp_req_v4. 
Then, the ICI is associated with the packet, and remains with it 
as long as the packet is waiting in the queue. The 
a_Virtual_Clock_Stamp field is accessed in the dequeue state 
in order to choose the packet with the lowest auxVC value to 
be sent to the output interface.  
Step 6. If there are no packets waiting in other queues, the 
packet is sent out immediately. Otherwise, it will remain in its 
associated queue and the process control returns to the idle 
state.  
 
3.1.2   dequeue State 
The packet enters the dequeue state when it is time for it to be 
dequeued. The operations conducted in the dequeue state are: 

Step 1.  Send the packet to the network interface.  
Step 2. Get the ICI named ip_arp_req_v4 associated with the 
packet, and read its a_Virtual_Clock_Stamp field.  
Step 3. If there are no packets in other queues, return to the 
idle state. Otherwise, choose the next packet to be dequeued.  
In order to select the correct packet to be serviced, check all 
the queues by looking at the auxVC stamp value of the packets 
located at the head of the queues. The packet with the lowest 
auxVC stamp value is chosen as the next packet to be serviced. 
In case that there is more than one packet with identical stamp 
value, the priority is given to the packet from the queue with 
the lowest index.  
Step 4.  Schedule the time at which the selected packet should 
be serviced, and return to the idle state. This time is calculated 
by dividing the packet size (in bits) by the link rate (in 
bits/sec). 
 
3.2   QoS Configuration Object 
A new profile (VC Profile) for the VirtualClock algorithm was 
also added in qos_attribute_definer process model of 
OPNET’s QoS Configuration Object [7]. This enables users to 
choose the suitable scheduling mechanism.  
 
Users can define a queuing profile with an optional number of 
queues, and can configure the queue attributes: Arrival Rate 
(expected packet arrival rate of the flow entering the queue), 
Maximum Queue Size, and Classification Scheme (a scheme 
for categorizing packets to flows and assigning them to 
queues).  
 
4   Model Verification 
In order to evaluate the performance of the VirtualClock 
model, we have created the simple network model.  
 

 
 

Figure 2: Simple network model for performance 
verification of the VirtualClock algorithm. 

 

This is an ideal scenario in which both sources are generating 
packets according to their specified packet rates. The Ethernet 
network consists of two clients sending traffic to associated 
servers via switches and routers. Clients 1 and 2 generate 
1,024 bytes IP packets at a constant rate of 10 and 5 
packets/sec, respectively. 
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All the nodes in the network are connected with 10BaseT links 
with a 10 Mbps data rate. The only link in the network that has 
a lower capacity is the link between Routers 1 and 2, which 
was chosen to be a DS0 link with a 64 Kbps data rate. The 
bottleneck link is positioned immediately before the output 
interface of Router 1 where the VirtualClock scheduling 
algorithm is implemented. Hence, we can observe the order in 
which the packets are dequeued by the VirtualClock 
algorithm.  
 
Incoming packets from Clients 1 and 2 are destined for 
Servers 1 and 2, respectively. The packets are sorted into two 
distinct queues and ordered out of the queues according to 
their specified packet rates.  
 
In the VC profile of the IP QoS Configuration object, we 
defined a new queuing profile named Flow Based. This profile 
has two rows. Each row represents a queue with the following 
parameter settings: 
• Arrival Rate0 = 10, Queue Size0 = 500 
• Arrival Rate1 = 5, Queue Size1 = 500. 
 
Incoming packets from Client 1 are recognized as a flow and 
are assigned to the first queue (Q0). Packets from the second 
flow, coming from Client 2, are assigned to the second queue 
(Q1). The following graphs are obtained as outputs of OPNET 
simulations. Incoming traffic to queues Q0 and Q1 is shown in 
Figure 3.  

 

 
 

Figure 3: Incoming traffic to queues: Q0 (top) and Q1 
(bottom), in (packets/sec) vs. time. 

 

Figure 4 illustrates the VC stamp values of the packets in 
queues Q0 and Q1, respectively. The stamp values are 
calculated upon packet arrivals to the enqueue state of the 
scheduling process. As expected, when a packet arrives to a 
particular queue, the queue’s VC increases by 1/AR of the 
particular queue (0.1 for Q0, and 0.2 for Q1), and the arriving 
packet is stamped with the value VC.  

Figure 5 shows the auxiliary Virtual Clock (auxVC) stamp 
values of the packets in queues Q0 and Q1 that are sent to the 
outgoing interface. We expect the VirtualClock algorithm to 
be a fair algorithm that assigns the bandwidth fairly to the 
flows according to their negotiated packet generation rates. 
Because the specified arrival rate of the first flow is twice that 
of the second flow, we expect that the scheduling algorithm 
will send two packets from Q0 for each packet sent from Q1, 
as illustrated in Figure 5.  
 

 
 

Figure 4: Virtual Clock (VC)  stamp vs. packet arrival time 
(sec) for queues: Q0 (top) and Q1 (bottom). 

 

 
 

Figure 5: Auxiliary Virtual Clock (auxVC) vs. packet 
departure time (sec) for queues Q0 and Q1. 

 

The outgoing traffic from queues Q0 and Q1, scheduled by the 
VirtualClock algorithm, is shown in Figure 6. 
 
5   Simulation Experiments 
In order to evaluate the performance of the VirtualClock 
algorithm we conducted simulations using OPNET version 
7.0.B.  
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Figure 6: Outgoing traffic from queues: Q0 (top) and Q1 
(bottom), in (packets/sec) vs. time.  

 

In this scenario, we consider two conforming and one 
nonconforming sources. The first conforming source has 
constant packet generation rate. The second conforming 
source generates traffic with self-similar characteristics, which 
fluctuates around its specified average packet arrival rate. The 
nonconforming source generates packets with a constant rate. 
For a short period of time, it conforms to its negotiated packet 
generation rate. After this short period, the source decreases its 
rate for a while in order to gather credits for sending a burst of 
packets at a rate that is four times its expected rate. This 
behavior for the nonconforming source is chosen so that we 
could examine the reaction of the VirtualClock algorithm in 
situations when a misbehaving source wants to use the credits 
gained for sending a burst of traffic. 
 
The network topology is similar to the topology shown in 
Figure 2, with an additional source and destination. In this 
scenario, we use three Ethernet clients to send traffic to three 
Ethernet servers. All the nodes are connected with 10BaseT 
links, except the DS0 link between Routers 1 and 2. The 
specified packet arrival rates of Clients 1, 2, and 3 are 4, 2, 
and 4 packets/sec, respectively. These rates are assigned in the 
VC profile of the IP QoS Configuration object. In the VC 
Profile, we defined a queuing profile Flow Based1 that 
contains three rows. Each row represents a queue with the 
following parameter settings: 
• Arrival Rate0 = 4, Queue Size0 = 500 
• Arrival Rate1 = 2, Queue Size1 = 500 
• Arrival Rate2 = 4, Queue Size2 = 500. 
 
Client 1 starts sending packets at time 20 sec. It generates 
1,024 bytes IP packets at a constant rate of 4 packets/sec, and 
stops at 555 sec. Client 2 also generates 1,024 bytes IP 
packets. It begins generating traffic at constant rate of 2 
packets/sec at 20 sec. At time = 142.5 sec, it reduces the traffic 
rate and keeps on sending packets at rate of 0.5 packets/sec for 
250 sec. At 392.5 sec, it increases its rate and continues 

sending packets at a rate of 8 packets/sec until time 455 sec. 
Client 3 is an OPNET ethernet_rpg_wkstn_adv source node 
model. This source is chosen from OPNET’s Raw Packet 
Generator (RPG) model [8]. RPG is a traffic source model that 
is used to generate self-similar traffic [9].  The self-similar 
traffic model is used to capture the fractal properties of 
Internet traffic. Client 3 starts at 5 sec and sends traffic with 
the following specifications: 
• Average arrival rate = 4  (packets / sec) 
• Hurst parameter = 0.9 
• Fractal onset time scale = 0.1. 
 
Figures 7 shows the incoming traffic from Clients 1, 2, and 3 
to Router 1’s queues Q0, Q1, and Q3, respectively. Figures 8 
shows the Virtual Clock (VC) stamp values of the packets in 
queues Q0, Q1, and Q2. The slope of the (VC) graph for Qi is 
calculated as: slopei = Vticki / (1/ ARi). 
 
If a flow is conforming to its expected packet generation rate, 
the values of Vtick and 1/AR are identical. Hence, its VC slope 
is equal to 1.  As it can be seen in the Figure 8 (top), flow0 
adheres to its specified packet arrival rate. Thus, the slope of 
the Virtual Clock graph is 1. Figure 8 (middle) shows that the 
slope of the graph changes at instances when packet arrival 
rate of the flow changes. For the periods during which traffic 
has lower arrival rate (142.5 sec ­ 392.5 sec), Virtual Clock 
line has slope < 1. For higher arrival rate periods (392.5 sec - 
455 sec), we observe a steeper line with slope > 1. Figure 8 
(bottom) shows that for a flow fluctuating around its specified 
arrival rate, the Virtual Clock graph is close to a line with 
slope 1. 
 
Figure 9 shows the auxiliary Virtual Clock stamp values 
(auxVC) of packets in queues Q0, Q1, and Q2. The role of this 
variable is to prevent the flows from gathering credits by not 
sending traffic for a period of time and then suddenly sending 
a burst of traffic. This is achieved by upgrading the auxiliary 
Virtual Clock value to the larger value between auxVC and 
real time. 
 
By comparing Figures 8 and 9, we see that the Virtual Clock 
and auxiliary Virtual Clock graphs of packets coming to Q0 
(top) and Q2 (bottom) have the same slope, because the flows 
have been conforming to their expected sending rate. In 
contrast, the traffic to Q1 reduces its rate at 142.5 sec. This is 
shown as the difference between the slopes of the Virtual 
Clock and auxiliary Virtual Clock in Figures 8 and 9 (bottom) 
from 142.5 sec to 392 sec. 
 
Figure 10 shows the auxiliary Virtual Clock (auxVC) stamp 
values of the packets in queues Q0, Q1, and Q2 that are being 
sent to the outgoing interface. 
 
Figure 11 shows the outgoing traffic from queues Q0, Q1, and 
Q2 of Router 1, after being scheduled by the VirtualClock 
algorithm. In case the total link traffic does not exceed the 
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link’s capacity, the algorithm allocates bandwidth to flows 
according to their specified packet arrival rates. If there is no 
available bandwidth, the traffic from a flow that is exceeding 
its specified arrival rate will be queued and serviced with the 
flow’s specified arrival rate. The packets are dropped when 
the queue becomes full.  
 

 
 

Figure 7: Incoming traffic to queues: Q0 (top), Q1 (middle), 
and Q2 (bottom) in (packets/sec) vs. time. 

 

 
 

Figure 8: Virtual Clock (VC)  stamp vs. packet arrival time 
(sec) for queues: Q0 (top), Q1 (middle), and Q2 (bottom). 

 

It can be seen from Figures 7 and 11 (top) that since Client 1 
is sending traffic according to its specified arrival rate of 4 
packets/sec, the queue Q0 is served with the same rate. 
 
As seen from Figures 7 and 11 (middle), traffic from Client 2  
is serviced with its arrival rate (2 packets/sec) while it 
conforms to its specified packet rate (until 142.5 sec). When 
client starts sending packets with arrival rate of 8 packets/sec, 

which is four times the expected rate, the VirtualClock 
schedules packets with the flow’s expected packet rate (2 
packets/sec). The total bandwidth is used by the three sources 
until 555 sec, when Client 1 stops sending traffic. At that time, 
part of the bandwidth will be freed and the traffic from Q1 
will be serviced at a higher rate. 
 

 
 

Figure 9: Auxiliary Virtual Clock (auxVC) stamp vs. packet 
arrival time (sec) for queues: Q0 (top), Q1 (middle), and  

Q2 (bottom). 
 

 
 

Figure 10: Auxiliary Virtual Clock (auxVC) stamp vs. packet 
departure time (sec) for queues: Q0 (top), Q1 (middle), and 

Q2 (bottom). 
 

As seen in Figures 7 and 11 (bottom), Client 3 generates self-
similar traffic. The Virtual Clock algorithm forwards packets 
at rate of 4 packets/sec, which is the average traffic generation 
rate of the source. 
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Figure 11: Outgoing traffic from queues: Q0 (top), Q1 
(middle), and Q2 (bottom) in (packets/sec) vs. time. 

 

We have compared the functionality of the VC algorithm with 
three algorithms already implemented in OPNET: WFQ, PQ,  
  

 

 

 
 

Figure 12: Outgoing traffic after being scheduled by 
scheduling algorithms: VC, WFQ, PQ, and CQ. Shown are 

queues: Q0 (top), Q1 (middle), and Q2 (bottom) in 
(packets/sec) vs. time. 

 

and CQ. We used the same scenario as in Section 5 and we 
repeated simulation experiment while employing different 
scheduling algorithms in Router 1. The outgoing traffic from 
queues Q1, Q2, and Q3 is shown in Figure 12. The graphs 
show the OPNET simulation results from VC, WFQ, PQ, and 
CQ algorithms. 
 
6   Conclusion 
In this paper we described the OPNET implementation of the 
data forwarding function of the VirtualClock scheduling 
algorithm. We described the modification in the OPNET’s 
ip_output_iface scheduling process model used in the IP layer 
of all IP objects. We verified the correctness of the algorithm 
by simulating a simple network. We also used more complex 
simulation scenarios to illustrate the functionality of the 
algorithm. 
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