
1

OPNET Implementation of Endpoint Admission Control Algorithms
Kun Wu, Yan Ma, and Ljiljana Trajkovic

Simon Fraser University
Burnaby, British Columbia

Canada V5A 1S6
{karenw, ymaa, ljilja}@cs.sfu.ca

Abstract
The history of telephone networks indicates a trend of
employing sophisticated switches and dumb hosts. Hence, it is
often expensive and difficult to replace switches and add new
applications. In contrast, Internet employs simple routers and
sophisticated applications in hosts. New applications can be
added without requiring infrastructural changes. In order to keep
routers simple, there is a growing need for new mechanisms
employing end-hosts that provide admission control.

In this paper, we describe OPNET implementation of two
endpoint admission control (EAC) algorithms. The OPNET
EAC model captures basic EAC procedures for network probing
and data transmission. We discuss several architectural issues
and implementation details. We then describe the packet format
and the node and process models of the end-hosts and routers.
We also present simulation scenarios based on various traffic
sources, traffic loads, probing times, and number of hops.

Keywords: Admission control algorithms, endpoint admission
control, measurement-based admission control, best-effort
service, quality of service.

1. Introduction
The service quality of today’s Internet is quite unpredictable and
not reliable enough to provide satisfactory services for the
emerging applications, such as real-time audio and video that
require strict Quality of Service (QoS) parameters. For example,
an ordinary voice conversation demands a one-way delay of less
than 150 ms [1]. This is determined by human perception, and,
thus, does not differentiate whether the telephone call is carried
by a traditional circuit-switched or an IP network. Similar limits
exist for other multimedia applications. Hence, most applications
are designed to deal with losses and to reduce delay jitter in a
lightly loaded network. Among many proposals for improving
the QoS, admission control is an attractive approach.

Admission control is a procedure used to ensure that admittance
of a new flow into a resource-constrained network does not
violate service commitments made by the network to the already
admitted flows [2]. Given the existing traffic information, the
network decides whether there are sufficient resources to meet
the QoS requested by the new connection. Traditional
centralized approach for admission control is router-based.
Routers perform per-flow admission control, maintain per-flow
states, and process all the measuring, computing, and decision-
making. Although these schemes may provide excellent QoS,
they are difficult to deploy because they require modifications of
the current IP infrastructure.

Newly proposed EAC schemes avoid the need for infrastructure
modifications by moving the per-flow resource management

from routers to end-hosts. In an EAC scheme, endpoints send
probe packets to measure network conditions before transmitting
data. Endpoints then accept or reject connections based on the
measured outcome. These mechanisms do not require
implementation of additional procedures in routers, other than
routers’ capability to provide differentiated services.

Various endpoint admission control algorithms emerged recently
[2]-[6]. The underlining approach of these designs is that
endpoints probe the path by sending probe packets at the
maximum data rate, and hence collect path information before
sending data. The flow could be admitted if the probe
experiences a better quality than a specified threshold. EAC,
primarily intended to support a soft real-time service, provides
only an enhanced QoS without hard guarantees. Given that the
queuing delays are likely to be small, the QoS is measured
strictly in terms of packet loss. The goal of EAC is to make this
packet loss rate small, without giving any precise quantitative
assurances [3].

In summary, EAC is an attempt to use the regular best-effort
infrastructure with DiffServ [7] extensions and, by adding
control algorithms at the endpoints, deliver a real-time service.
This represents a considerable shift in the way real-time services
are supported [7].

This paper is organized as follows: in Section 2, we discuss the
EAC principles and various procedures; in Section 3 we describe
the OPNET implementations of EAC schemes; and in Section 4
we present the simulation results. We summarize the results and
give possible extensions for future work in Section 5.

2. Overview of EAC Principles and EAC Variants
Two key components of the EAC scheme are a measurement
process that produces an estimate of the current network
condition and a decision algorithm that uses the information
collected by the measurement process to make admission control
decisions. EAC schemes proposed in the literature can be
classified based on several criteria.

Based on the distinction between admission-controlled and non-
admission-controlled (best-effort) traffic, EAC schemes can be
classified into legacy, in-band, and out-of-band [7]. Legacy EAC
treats the traffic equally. In-band EAC separates admission-
controlled from non-admission-controlled traffic and gives the
former a higher priority, while out-of-band EAC goes even
further: it divides admission-controlled traffic into probe traffic
and data traffic, where data traffic gets the highest priority.

In the decision-making stage, there are two methods for
indicating network congestion: congestion mark and packet
drop. In the algorithm that marks packets in the case of

2

congestion [5], all packets are treated equally. Hosts can send as
much traffic as they wish and must pay for the marked packets
in case of congestion. In a quite different approach, packet drop
is used as a sign of congestion [3], [4] and probe packets may be
sent either with an identical or a lower priority class than data
packets. Hence, EAC schemes can be classified into four groups:
in-band drop, out-of-band drop, in-band mark, and out-of-band
mark. We implemented in OPNET the in-band drop and out-of-
band drop algorithms. According to the literature [7], packet
drop and congestion mark algorithms have similar performance.
Hence, we omitted implementing the marking mechanisms.

Scheduling mechanisms also have various effects. The most
striking approach is to use a rate limiter, which is a strict priority
scheduler with a bandwidth (or buffer) limit imposed on the
admission-controlled traffic. The transmission capacity is
divided into two bands: one for admission-controlled traffic and
the other for the best-effort traffic. The admission-controlled
traffic is not permitted to surpass its assigned portion and steal
bandwidth from the best-effort traffic. The best-effort traffic can
use its own share of bandwidth and the portion left by the
admission-controlled traffic. The bandwidth limit for the
admission-controlled traffic applies to the sum of the admission-
controlled data traffic and probe traffic. Nevertheless, there is no
separate band limits for each flow of data traffic. The
relationship is illustrated in Figure 1, where Ctotal is total
available capacity, Cbe is the capacity allocated to best-effort
traffic, and Cadm is allocated for admission-controlled traffic.

Figure 1: Bandwidth allocation.

In the case of the in-band EAC algorithm, we implemented one
queue for both probe and data traffic. In the case of the out-of-
band EAC, we implemented separate queues for date and probe
traffic.

2.1 Algorithm description
A communication session consists of two phases: probe phase
and data phase. A session always begins with a probe phase. The
sending host sends probe packets at the maximum transmission
rate that will be required in the data phase for a pre-agreed
period. The receiving host tracks the loss of probe packets and,
at the end of the probing period, sends the acceptance/rejection
decision to the sending host. The host may make a decision
before the end of the probe phase. This is called early-reject.
Upon receiving the acceptance decision, the sending host enters
the data phase and starts sending data. In case of a rejection, it
backs off for a certain amount of time, and then re-probes for the
same session.

Figures 2 and 3 illustrate the acceptance and rejection
communication sessions, respectively. In our model, we
separated the sender and receiver to simplify the
implementation, although in a deployed network an end-host
should be able to send and receive packets at the same time.

Figure 2: Acceptance of a communication session.

Figure 3: Rejection of a communication session.

The probing period needs to last long enough to guarantee a
rather accurate measurement, but not too long to introduce
unnecessary additional traffic into the network. Usually, there
will be a range of choices that are defined in the service contract.
The acceptance threshold should be constant and uniform across
sessions in the same service class. If variable thresholds were
allowed, the QoS for admitted flows would be degraded by the
flow with the less stringent requirements (higher threshold
values) [7].

3. OPNET Model: Implementation Details
We have implemented in-band drop and out-of-band drop
OPNET EAC models with early reject technique enabled. For
simplicity, we have not implemented the back off and re-probe
phases (Figure 3) upon rejection of a session. Instead, we only
allow the sender to probe the network once for each session. If
the receiver rejects the session attempt, the sender counts this
session as a failure, and starts a new session. In a real network, a
sender should be able to back off and then re-probe several times
before aborting the session. However, the simplified scheme that
we implemented has the same effect as the implementation with
re-probe functionality because, from traffic point of view, the re-
probe flow can be seen as a new flow.

Time

Cbe

Cadm

Ctotal

Bandwidth

 Receiver

Timeout

Sender

Probe phase

Timeout

Back off
Reject

Measured time

Feedback

Re-probe

 Receiver

Timeout

Sender

Probe phase

Timeout

Data phase

Accept

Measured time

Feedback

3

Data packets and probe packets contain 100 and 64 bytes,
respectively. Small probe packets are chosen to use less
bandwidth and, hence, achieve more accurate measurements. We
defined eleven fields in the packet header: destination address
(DA) and its subnet (DES_NET), source address (SA) and its
subnet (SRC_NET), session ID (Session_ID), sequence ID
(SEQ_ID), priority ID (PRIO_ID), probe (or data) transmission
rate (TRAN), probe (or data) transmission period (DUR), the
number of hops (HOP_NUM), and FLAG. SEQ_ID is the
sequence number of the packet in a session. Session_ID denotes
the communication session number that the host wishes to set
up. SA, SRC_NET, and Session_ID compose a unique identifier
to distinguish the sender at the particular time instance. This
identifier helps the receiving host distinguish sessions from
various senders, because, in our design, the receiver needs to
handle multiple sessions simultaneously.

3.1 End-hosts: EAC Sender and Receiver
EAC Sender node model: The node model of the EAC Sender
(Figure 4) consists of a processor (proc) that is the core of the
EAC sender, a probe source (pb_src) that generates constant bit
rate (CBR) probe packets, and a data source (data_src) that
generates CBR or variable bit rate (VBR) data traffic. proc uses
two statistic wires to control when data and probe sources start
or stop generating traffic. A built-in transmitter xmt sends the
probe or data traffic, and a built-in receiver processor rcv
receives feedback packets from the receiver.

Figure 4: EAC Sender node model.

EAC Sender process model: The EAC Sender process model
(proc) is shown Figure 5. In the init state, proc loads the
attributes and registers the statistics. It then enters the probe state
to trigger the probe source to generate probe packets. Upon
receiving an empty packet from the pb_src, proc sets the fields
in the header and sends the packet to the receiver. If a negative
feedback arrives, the sender starts probing again for a new
session after a pause that is specified in the model interface by
the user. If a positive feedback arrives on time, proc triggers the
data_src to start generating traffic. It also detects wrong-
delivered packets (unmatched DA in the packet header) or
obsolete feedback packets.

Figure 5: EAC Sender process model.

4

EAC Receiver node model: The node model of the EAC
Receiver consists of a processor, a built-in point-to-point
receiver, and a built-in point-to-point transmitter.

EAC Receiver process model: The EAC Receiver process
model is shown in Figure 6. The process begins at init state and
then enters the idle state. The processor may enter feedback ,
close_session, or rcv_packet states depending on the specific
event: if a packet arrives, it enters rcv_packet state; if it is time
to send a feedback, it enters feedback state and sends a feedback
packet; and if it detects an obsolete session, it enters
close_session state to perform garbage collection.

Figure 6: EAC Receiver process model.

In order to handle multiple sessions from different senders
simultaneously, the receiver employs two hush-tables to store
the information collected during probe and data phases. Sender’s
SA, SRC_NET, and Session_ID are combined to form the key of
the hush-table. The value stored in the hush-table is a user-
defined data structure pk_struct, which is defined in the header
file and included into the model. The definition of the structure
is:

typedef pk_struct
{ state; // three possible values: unused, open, and closed.

address; // sender ID.
subnet_id; // subnet that contains the sender.
pk_num; // number of packets received during the session.
seq_id; // sequence number of the last received packet.
trans_rate; // transmission rate used in the current phase.
trans_dur; // estimated transmission duration.
loss_num ; // number of packets lost.
loss_rate ; // (packets sent – packets received)/packets sent
timer ; // time of the first packet arrival.
event; /* an event handle for setting the timer to invoke the
action of sending feedback at the end of the probing phase.
Reference this handle in case of event cancellation. */

}

In general, when a packet arrives, the receiver checks the packet
type and gets sender’s SA, SRC_NET, and Session_ID from the

packet header. Then, it updates the value in the hush-table and
processes the packet accordingly.

When a probe packet for a new session arrives, the receiver
creates an instance of pk_struct using the values obtained from
the packet header, and then stores the instance into the probe’s
hush-table. At the same time, the receiver starts a feedback timer
to invoke the action of sending feedback at the end of the probe
phase. Upon timeout, the receiver calculates the experienced
packet loss, makes the admission decision, and sends the
corresponding feedback. The pseudo code is:

If threshold × SEQ_ID > SEQ_ID - number_received
Then

Send positive feedback decision
Else

Send negative feedback decision.

In case of the early-reject technique, the probing period is
divided into several time slots. At the end of each time slot, the
receiver checks whether the experienced traffic condition is
beyond the threshold. If so, it sends a negative feedback decision
immediately, cancels the feedback timer, and closes the session.
The feedback packet is sent with a higher priority to minimize
the risk of loss. In our implementation, we opted not to resend
the feedback packet if it gets lost because an EAC Sender drops
the session when either no feedback is received on time or the
received feedback is negative. If the lost feedback packet were
negative, we assumed that losing it had the same effect as
receiving it. If the lost feedback packet were positive, it would
have affected the validity of our assumption. However, in both
cases, loosing a feedback packet, which has a higher priority,
implies that the network is most likely congested. Hence, not
resending a feedback packet is a reasonable option to simplify
the implementation.

When a data packet arrives, the receiver collects statistics. In
normal network conditions, the last data packet in a session is
the FIN packet. Its FLAG field in the packet header is set to FIN.
Upon receiving a FIN packet, the receiver closes the
corresponding session. In the case when the FIN packet gets lost,
the receiver forcibly closes the session that has been idle for too
long and performs the garbage collection. Timers are
implemented in the model to invoke the garbage collection
periodically.

3.2 Router model and its queue process model
We implemented a relatively simple router model. It has only
five pairs of ports: four pairs are for the local hosts and the fifth
pair is the default port for routing packets. In order to avoid
complicated routing tables and routing rules, we implemented a
simple routing algorithm:

Check the subnet destination of the incoming packet.
If the packet is addressed to the local subnet, then

Get address ID from the packet header,
Send the packet to the port that matches the address

ID.
Else (packet is not addressed to the local subnet)

If the packet is from a local host, then

5

Route it to the default port.
Else (the packet is from the default port, i.e., from
another subnet)

Route it to the user-specified outgoing port
(User specifies outgoing port via the model interface before
starting the simulation.)

We implemented two EAC router models: in-band and out-of-
band. They have identical queue process state diagrams (Figure
7). The procedures in the queue process model are:

- Upon packet arrival, router moves from init or idle to
arrival state;
- Insert the packet into the corresponding queue if there is
a space in that queue; if no space, the packet is dropped.
- Upon successful insertion, if the router is not busy
serving another packet, it enters svc_start to start a
service timer, and then goes to idle state to wait for the
service time finish. If the router is busy, it enters idle state
directly.
- Whenever router finishes serving a packet, it enters
svc_compl state to de-queue the packet based on its
priority and to send it.

Figure 7: Router queue process model.

The router also increases the HOP_NUM field in the packet
header. The receiver uses the HOP_NUM to calculate the
waiting time before forcibly closing an obsolete data session, as
in the case when the session’s FIN packet is lost.

Although the two-router mo dels have identical process state
diagram, they have different scheduling algorithms. The in-band
router stores the data and probe packets in one FIFO queue with
a buffer size of eight packets, and stores best-effort packets in a
separate queue with a lower priority and a buffer with no size
limitation. The out-of-band router stores data and probe packets
in two separate queues: the queue for data packets has higher
priority and a buffer size of six packets, while the queue for
probe packets has lower priority and a buffer size of two
packets. The rate-limiter discussed in Section 2, which employs
a weighted round robin algorithm, guarantees that the maximum
service time used for admission-controlled traffic is 2/3 of the
entire bandwidth, while the minimum service time used for the
best-effort traffic is 1/3 of the entire bandwidth.

4 . Performance Evaluation
In order to illustrate the behavior of EAC schemes, we employ
two network models. For most simulation scenarios, we use a
single-hop network model. It has three senders and one receiver
(Figure 8). We use a multi-hop network model for the simulation

of the in-band EAC scheme (Figure 22). Traffic source
parameters are given in Table 1.

We present ten simulation results. Each is illustrated by the data
loss (data loss vs. time) and probe loss (probe loss vs. time)
graphs. These are statistics that the receiver module collects
from all senders over the data and probe phases. Data (or probe)
loss is the percentage of accumulated data (or probe) packets
loss with respect to the total data (or probe) packets transmitted
by all senders at each session over one simulation period.
Probing and data durations are 10 and 100 sec, respectively.

Figure 8: Simulation scenario for single-hop network model.

 Scenario

EAC
sender
(transmissi
on rate)
(bps)

Router
(bps)

Service
rate
(bps)

Q
u
e
u
e

Buffer
 (pk)

Link
(bps)

con_3_sender
_in-band

CBR (512,
512, 1024)

in-band 1024 1 8,
infinity

2048

con_3_sender
_out-of-band

CBR (512,
512, 1024)

out-of-
band

1000 3 2,6,
infinity

2048

bur_3_sender_
in-band

VBR
(5120)

in-
band

4800 1 8,
infinity

9600

bur_3_sender_
out-of-band

VBR
(5120)

out-of-
band

6144 3 2,6,
infinity

9600

Multi-hop CBR (600) in-
band

1024 1 8,
infinity

1024

Table 1: Traffic source parameters.

4.1 In-band EAC algorithm
Figures 9 and 10 show simulation results for the in-band EAC
model using CBR traffic. They indicate reduced data losses
when end-hosts control the flow admission.

At the beginning of the simulation, three senders compete to be
admitted by the receiver. The sender experiencing a probe loss
rate above the threshold of 0.2 will not be admitted (Figure 9).
Other senders, experiencing a probe loss less than 0.2, will be
admitted. Figure 9 indicates that the average data loss is lower
than the threshold while the maximum data loss is approximately
0.2.
In Figure 10, when the threshold increases to 0.5, the maximum
probe loss during the entire simulation period is below 0.5.

6

Hence, all session-setting attempts from the three senders are
accepted. All three senders start their first session-setting
attempts at the beginning of the simulation time simultaneously.
Because of the large threshold value, all flows are admitted and
start sending data traffic after the probing phase, which causes
heavy traffic in the network. Hence, packet loss reaches a peak
at the beginning. After a while, senders are in different phases of
their transmission and they are not sending probe or data packets
simultaneously. Therefore, the traffic gets smoother and both
probe and data losses start decreasing.

Figure 9: In-band EAC model using CBR traffic: probe loss
and data loss. Receiver has a threshold of 0.2. The three
senders start the first probing phase at 0 sec.

Figure 10: In-band EAC model using CBR traffic: probe loss
and data loss. Receiver has a threshold of 0.5. The three
senders start the first probing phase at 0 sec.

We repeated the two simulation scenarios with the VBR traffic
source. Simulation results are captured with thresholds set at 0.2
and 0.5 (Figures 11 and 12, respectively). The maximum data
loss during the simulation period is close to the threshold (0.2 or
0.5), and the average data loss is below the threshold. Figures 9-
12 indicate that in the case of in-band EAC scheme, the

maximum data loss is close to the threshold value for both CBR
and VBR traffic. Hence, the threshold is a reasonable indicator
of the traffic loss in the case of the in-band EAC algorithm.

Figure 11: In-band EAC model using VBR traffic: probe loss
and data loss. Receiver has a threshold of 0.2. The three
senders start the first probing phase at 0 sec.

Figure 12: In-band EAC model using VBR traffic: probe loss
and data loss. Receiver has a threshold of 0.5. The three
senders start the first probing phase at 0 sec.

4.2 In-band EAC algorithm: short probing vs. long probing
periods
We investigated the probing period and examined its effect in
case of the in-band model with VBR traffic. The data
transmission duration is 100 sec, while simulation duration is
1,000 sec.

In the simulation scenario where the sender probes for a short
period, the ratio between probing period and data period is
approximately 2-3%. Data loss (Figure 13) reaches the
maximum value of 0.5, twice the threshold. However, the probe
loss rate is still low. When the ratio increases to 25-30%, the
data loss decreases to the threshold level (Figure 14).

7

The difference between Figures 13 and 14 indicates that for the
in-band EAC scheme, long probing can produce better
measurement accuracy than short probing. However, long
probing may not be always preferred. Controlling the length of
the probing period may be used to optimize the network
performance.

Figure 13: In-band EAC model: probe loss and data loss.
Receiver’s threshold is 0.2. Probing periods of the three
senders are 2, 2, and 3 sec, respectively.

Figure 14: In-band EAC model: probe loss and data loss.
Receiver’s threshold is 0.2. Probing periods of the three
senders are 25, 25, and 30 sec, respectively.

We also used link utilization to examine the performance of the
in-band EAC scheme. Figure 15 shows that short probes cause
more severe data loss, but permit relatively higher link
utilization. When the average data loss is above 0.04, utilization
increases to 50-60%. On the other hand, the utilization is much
lower (only 40%) in the case when senders use long probing
periods (Figure 16) because more bandwidth is used for testing
the network condition.

Figures 15 and 16 imply that admitted flows using short probing
periods suffer approximately ten-time higher data loss than
flows using long probing periods, but have roughly 10% higher
utilization. If resources permit, using long-probing period in in-
band EAC achieves better performance. However, using long
probing periods may have higher possibility of congesting the
network. Hence, it is important to choose the right probing
period.

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Network utilization
D

at
a

lo
ss

Figure 15: In-band EAC model: data loss rate vs. utilization
using short probing periods. Receiver’s threshold is 0.2.
Probing periods of the three senders are 2, 2, and 3 sec,
respectively.

0.422 0.425 0.43 0.435 0.44

0.014

0.015

0.016

0.017

Network utilization

D
at

a
lo

ss

Figure 16: In-band EAC model: data loss rate vs. utilization
using long probing periods. Receiver’s threshold is 0.2.
Probing periods of the three senders are 25, 25, and 30 sec,
respectively.

4.3 Out-of-band EAC algorithm
The simulation results are different in the case of out-of-band
EAC algorithm. The network model is the same as in the case of
in-band scenario, except that the router employs out-of-band
process model. We performed two simulation runs with CBR
traffic and two with VBR traffic. The traffic model parameters
of the end-hosts are identical to the case of in-band simulations.
Figure 17 is the result captured from the first simulation case for
the out-of-band EAC algorithm with a CBR traffic and threshold
value of 0.2. It shows zero data loss, much lower than the value

8

in the case of the in-band EAC model. Nevertheless, the probe
loss is much higher than the corresponding probe loss in the in-
band model (Figure 9), which indicates that most attempts for
setting a connection were rejected.

After increasing the threshold to 0.5, probe loss decreases, which
implies that the number of accepted session setting attempts
increases. Data loss is zero most of the time (Figure 18).
Average data loss is far below the threshold. Compared to the
maximum data loss rate of 0.6 in the case of the corresponding
in-band EAC simulation (Figure 10), out-of-band algorithm has
the maximum data loss of only 0.3.

Figure 17: Out-of-band EAC model using CBR traffic: probe
loss and data loss. Receiver’s threshold is 0.2. The three
senders start the first probing phase at 0 sec.

Figure 18: Out-of-band EAC model using CBR traffic: probe
loss and data loss. Receiver’s threshold is 0.5. The three
senders start the first probing phase at 0 sec.

Figures 19 and 20 show the simulation results for the out-of-
band EAC algorithm with VBR traffic.

Figure 19: Out-of-band EAC model using VBR traffic: probe
loss and data loss. Receiver’s threshold is 0.2. The three
senders start the first probing phase at 0 sec.

Figure 20: Out-of-band EAC model using VBR traffic: probe
loss and data loss. Receiver’s threshold is 0.5. The three
senders start the first probing phase at 0 sec.

Figures 17-20 show that in the case of out-of-band EAC
algorithm, data loss is always lower than the threshold and the
corresponding results for the in-band algorithm. It is difficult to
relate the threshold to the actual data loss. The probe loss is
much higher than the corresponding probe loss for the in-band
algorithm. Unlike the case of the in-band EAC algorithm, in the
out-of-band EAC case, data traffic has a higher priority than
probe traffic. Hence, in the case of out-of-band EAC algorithm,
probe packets are more likely to be lost than data packets if
congestion occurs.

4.4 Comparison of the in-band and out-of-band EAC
algorithms
From the data loss aspect, out-of-band algorithm always
achieves lower data loss than in-band EAC algorithm. However,

9

when we examine the number of successful sessions, in-band
algorithm produces better results. The data shown in Figure 21 is
obtained under the identical simulation conditions for both in-
band and out-of-band algorithms. The plot shows that in-band
algorithm permits more flows into the network than the out-of-
band algorithm.

0 200 400 600 800 1000
1

2

3

4

5

6

7

8

9

10

11

Time (sec)

N
um

be
r

of
 a

cc
ep

te
d

se
ss

io
ns

in-band
out-of-band

Figure 21: Comparsion of the number of accepted sessions
for in-band and out-of-band EAC models.

Through the simulation experiments with in-band EAC and out-
of-band EAC, we showed that both algorithms have advantages
and disadvantages. Details are listed in Table 2.

 In-band EAC algorithm Out-of-band EAC

algorithm
Data loss Data and probe traffic

are closely related.
Threshold may be a good
predicator.
Data loss is higher.

Data loss is much lower.
It is difficult to relate the
actual data loss to the
threshold.

Flow
admission

Easier to admit flows. Flows are not easily
admitted.

Table 2: Comparison of in-band and out-of-band EAC
algorithms.

4.5 Multi-hop network
Simulation results discussed in Sections 4.2-4.4 are based on the
single-hop network model. We use a multi-hop scenario to
investigate the EAC behavior when packets have to cross several
hops to reach the receiver.

In the multi-hop network model (Figure 22), subnet 0 has two
senders (sender1 and sender3). Subnet 1 has one sender
(net1_sender2) and one receiver (net1_receiver3). Subnet 2 and
subnet 3 have one receiver each (receiver3 and receiver2,
respectively).

Figure 22: Multi-hop network model.

Possible bottleneck
link 1

Possible bottleneck
link 2

Possible bottleneck
link 3

10

Senders have identical model parameters, such as probe and data
transmission rates or probing and data periods, except that the
DA (destination address ID) and DES_NET (destination subnet
ID) are different in each simulation scenario. For fairness,
receivers in the three subnets have identical threshold of 0.2.
Every sender may set up a session with any receiver.

Senders communicate with various receivers so that packets
traverse various hops and create bottlenecks in different links in
the network (Figure 22). We examine the relationships between
the number of bottlenecks and the number of hops vs. the ratio
of successful sessions, respectively. Figures 23 and 24 indicate
that the number of bottlenecks that a connection may experience
in the network, rather than the number of hops, influences the
ratio of successful sessions. The number of bottlenecks seems to
dominate the data loss, while the number of hops does not
necessarily impair the admission decision. However, a flow
passing through multiple hops may have higher blocking
probability because it has a higher chance to traverse more
bottlenecks.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

Ratio of successful sessions

N
um

be
r

of
 b

ot
tle

ne
ck

s

Figure 23: Number of bottlenecks vs. ratio of successful
sessions.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Ratio of successful sessions

N
um

be
r

of
 h

op
s

Figure 24: Number of hops vs. ratio of successful sessions.

5. Conclusions and Open Issues

Simulation results indicate that EAC is capable of providing
certain levels of QoS in the network, such as achieving a pre-
defined packet loss probability for a flow. In the case of in-band
EAC algorithm, a close relationship between the maximum data
loss and the defined threshold can be maintained. Furthermore,
using long probing periods can lead to more accurate predication
of the data loss. Out-of-band EAC algorithm provides better
QoS with respect to data loss.

For both EAC schemes, a larger number of sessions was
admitted for CBR, compared to VBR traffic. This implies that
the more detailed forecast of network traffic is available, the
sharper the QoS predictions and better network utilization could
be achieved [8]. Hence, smoothing the traffic using certain
traffic shaping and policing techniques can help achieve better
performance.

The measurement and decision-making methods play important
roles in EAC algorithms. We have fine-tuned the threshold value
during simulation experiments to achieve better performance
results. Further developments of EAC algorithm may include
embedding the current model into the complete OSI stack,
investigating other traffic probing and measurement techniques,
and using genuine traffic traces.

6. References
[1] L. Breslau, S. Jamin, and S. Shenker, “Comments on the
performance of measurement-based admission control
algorithms,” in Proceedings of IEEE INFOCOM , Tel Aviv,
Israel, March 2000, pp. 1233-1242.
[2] G. Bianchi, F. Borgonovo, A. Capone, L. Fratta, and C.
Petrioli, “Endpoint admission control with delay variation
measurements for QoS in IP networks,” ACM Computer
Communication Review, vol. 32, no. 2, pp. 61-69, April 2002.
[3] V. Elek, G. Karlsson, and R. Ronngren, “Admission control
based on end-to-end measurements,” in Proceedings of IEEE
INFOCOM, Tel Aviv, Israel, March 2000, pp. 623-630.
[4] G. Bianchi, A. Capone, and C. Petrioli, “Throughput analysis
of end-to-end measurement-based admission control in IP,” in
Proceedings IEEE INFOCOM , Tel Aviv, Israel, March 2000,
vol. 3, pp. 1461-1470.
[5] F. Kelly, P. Key, and S. Zachary, “Distributed admission
control,” IEEE Journal on Selected Areas in Communications,
vol. 18, no. 12, pp. 2617-2628, December 2000.
[6] S. Jamin, S. Shenker, and P. Danzig, “Comparison of
measurement-based admission control algorithms for controlled-
load service,” in Proceedings of IEEE INFOCOM , Kobe, Japan,
April 1997, pp. 56-70.
[7] L. Breslau, E. Knightly, S. Shenker, I. Stoica, and H. Zhang,
“Endpoint admission control: architectural issues and
performance,” in Proceedings of ACM SIGCOMM, Stockholm,
Sweden, August 2000, pp. 57-69.
[8] Lj. Trajkovic and A. Neidhardt, “Effect of traffic knowledge
on the efficiency of admission control policies ,” ACM Computer
Communication Review, vol. 29, no. 1, pp. 5-34, January 1999.

