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Abstract 
The history of telephone networks indicates a trend of 
employing sophisticated switches and dumb hosts. Hence, it is 
often expensive and difficult to replace switches and add new 
applications. In contrast, Internet employs simple routers and 
sophisticated applications in hosts. New applications can be 
added without requiring infrastructural changes. In order to keep 
routers simple, there is a growing need for new mechanisms 
employing end-hosts that provide admission control. 
 
In this paper, we describe OPNET implementation of two 
endpoint admission control (EAC) algorithms. The OPNET 
EAC model captures basic EAC procedures for network probing 
and data transmission. We discuss several architectural issues 
and implementation details. We then describe the packet format 
and the node and process models of the end-hosts and routers. 
We also present simulation scenarios based on various traffic 
sources, traffic loads, probing times, and number of hops. 
 
Keywords: Admission control algorithms, endpoint admission 
control, measurement-based admission control, best-effort 
service, quality of service. 
 
1. Introduction 
The service quality of today’s Internet is quite unpredictable and 
not reliable enough to provide satisfactory services for the 
emerging applications, such as real-time audio and video that 
require strict Quality of Service (QoS) parameters. For example, 
an ordinary voice conversation demands a one-way delay of less 
than 150 ms [1]. This is determined by human perception, and, 
thus, does not differentiate whether the telephone call is carried 
by a traditional circuit-switched or an IP network. Similar limits 
exist for other multimedia applications. Hence, most applications 
are designed to deal with losses and to reduce delay jitter in a 
lightly loaded network. Among many proposals for improving 
the QoS, admission control is an attractive approach.  
 
Admission control is a procedure used to ensure that admittance 
of a new flow into a resource-constrained network does not 
violate service commitments made by the network to the already 
admitted flows [2]. Given the existing traffic information, the 
network decides whether there are sufficient resources to meet 
the QoS requested by the new connection. Traditional 
centralized approach for admission control is router-based. 
Routers perform per-flow admission control, maintain per-flow 
states, and process all the measuring, computing, and decision-
making. Although these schemes may provide excellent QoS, 
they are difficult to deploy because they require modifications of 
the current IP infrastructure. 
 
Newly proposed EAC schemes avoid the need for infrastructure 
modifications by moving the per-flow resource management 

from routers to end-hosts. In an EAC scheme, endpoints send 
probe packets to measure network conditions before transmitting 
data. Endpoints then accept or reject connections based on the 
measured outcome. These mechanisms do not require 
implementation of additional procedures in routers, other than 
routers’ capability to provide differentiated services. 
 
Various endpoint admission control algorithms emerged recently 
[2]-[6]. The underlining approach of these designs is that 
endpoints probe the path by sending probe packets at the 
maximum data rate, and hence collect path information before 
sending data. The flow could be admitted if the probe 
experiences a better quality than a specified threshold. EAC, 
primarily intended to support a soft real-time service, provides 
only an enhanced QoS without hard guarantees. Given that the 
queuing delays are likely to be small, the QoS is measured 
strictly in terms of packet loss. The goal of EAC is to make this 
packet loss rate small, without giving any precise quantitative 
assurances [3].  
 
In summary, EAC is an attempt to use the regular best-effort 
infrastructure with DiffServ [7] extensions and, by adding 
control algorithms at the endpoints, deliver a real-time service. 
This represents a considerable shift in the way real-time services 
are supported [7].  
 
This paper is organized as follows: in Section 2, we discuss the 
EAC principles and various procedures; in Section 3 we describe 
the OPNET implementations of EAC schemes; and in Section 4 
we present the simulation results. We summarize the results and 
give possible extensions for future work in Section 5. 
 
2. Overview of EAC Principles and EAC Variants  
Two key components of the EAC scheme are a measurement 
process that produces an estimate of the current network 
condition and a decision algorithm that uses the information 
collected by the measurement process to make admission control 
decisions. EAC schemes proposed in the literature can be 
classified based on several criteria. 
 
Based on the distinction between admission-controlled and non-
admission-controlled (best-effort) traffic, EAC schemes can be 
classified into legacy, in-band, and out-of-band [7]. Legacy EAC 
treats the traffic equally. In-band EAC separates admission-
controlled from non-admission-controlled traffic and gives the 
former a higher priority, while out-of-band EAC goes even 
further: it divides admission-controlled traffic into probe traffic 
and data traffic, where data traffic gets the highest priority.  
 
In the decision-making stage, there are two methods for 
indicating network congestion: congestion mark and packet 
drop. In the algorithm that marks packets in the case of 
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congestion [5], all packets are treated equally. Hosts can send as 
much traffic as they wish and must pay for the marked packets 
in case of  congestion. In a quite different approach, packet drop 
is used as a sign of congestion [3], [4] and probe packets may be 
sent either with an identical or a lower priority class than data 
packets. Hence, EAC schemes can be classified into four groups: 
in-band drop, out-of-band drop, in-band mark, and out-of-band 
mark. We implemented in OPNET the in-band drop and out-of-
band drop algorithms. According to the literature [7], packet 
drop and congestion mark algorithms have similar performance. 
Hence, we omitted implementing the marking mechanisms. 
 
Scheduling mechanisms also have various effects. The most 
striking approach is to use a rate limiter, which is a strict priority 
scheduler with a bandwidth (or buffer) limit imposed on the 
admission-controlled traffic. The transmission capacity is 
divided into two bands: one for admission-controlled traffic and 
the other for the best-effort traffic. The admission-controlled 
traffic is not permitted to surpass its assigned portion and steal 
bandwidth from the best-effort traffic. The best-effort traffic can 
use its own share of bandwidth and the portion left by the 
admission-controlled traffic. The bandwidth limit for the 
admission-controlled traffic applies to the sum of the admission-
controlled data traffic and probe traffic. Nevertheless, there is no 
separate band limits for each flow of data traffic. The 
relationship is illustrated in Figure 1, where Ctotal is total 
available capacity, Cbe is the capacity allocated to best-effort 
traffic, and Cadm is allocated for admission-controlled traffic.   

             
Figure 1: Bandwidth allocation. 

 
In the case of the in-band EAC algorithm, we implemented one 
queue for both probe and data traffic. In the case of the out-of-
band EAC, we implemented separate queues for date and probe 
traffic.  
 
2.1 Algorithm description 
A communication session consists of two phases: probe phase 
and data phase. A session always begins with a probe phase. The 
sending host sends probe packets at the maximum transmission 
rate that will be required in the data phase for a pre-agreed 
period. The receiving host tracks the loss of probe packets and, 
at the end of the probing period, sends the acceptance/rejection 
decision to the sending host. The host may make a decision 
before the end of the probe phase. This is called early-reject. 
Upon receiving the acceptance decision, the sending host enters 
the data phase and starts sending data. In case of a rejection, it 
backs off for a certain amount of time, and then re-probes for the 
same session. 
 

Figures 2 and 3 illustrate the acceptance and rejection 
communication sessions, respectively. In our model, we 
separated the sender and receiver to simplify the 
implementation, although in a deployed network an end-host 
should be able to send and receive packets at the same time. 

 
Figure 2: Acceptance of a communication session. 

 
 

 
Figure 3: Rejection of a communication session. 

 
The probing period needs to last long enough to guarantee a 
rather accurate measurement, but not too long to introduce 
unnecessary additional traffic into the network. Usually, there 
will be a range of choices that are defined in the service contract. 
The acceptance threshold should be constant and uniform across 
sessions in the same service class. If variable thresholds were 
allowed, the QoS for admitted flows would be degraded by the 
flow with the less stringent requirements (higher threshold 
values) [7].  
 
3. OPNET Model: Implementation Details 
We have implemented in-band drop and out-of-band drop 
OPNET EAC models with early reject technique enabled. For 
simplicity, we have not implemented the back off and re-probe 
phases (Figure 3) upon rejection of a session. Instead, we only 
allow the sender to probe the network once for each session. If 
the receiver rejects the session attempt, the sender counts this 
session as a failure, and starts a new session. In a real network, a 
sender should be able to back off and then re-probe several times 
before aborting the session. However, the simplified scheme that 
we implemented has the same effect as the implementation with 
re-probe functionality because, from traffic point of view, the re-
probe flow can be seen as a new flow. 
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Data packets and probe packets contain 100 and 64 bytes, 
respectively. Small probe packets are chosen to use less 
bandwidth and, hence, achieve more accurate measurements. We 
defined eleven fields in the packet header: destination address 
(DA) and its subnet (DES_NET), source address (SA) and its 
subnet (SRC_NET), session ID (Session_ID), sequence ID 
(SEQ_ID), priority ID (PRIO_ID), probe (or data) transmission 
rate (TRAN), probe (or data) transmission period (DUR), the 
number of hops (HOP_NUM), and FLAG.  SEQ_ID is the 
sequence number of the packet in a session. Session_ID denotes 
the communication session number that the host wishes to set 
up. SA, SRC_NET, and Session_ID compose a unique identifier 
to distinguish the sender at the particular time instance. This 
identifier helps the receiving host distinguish sessions from 
various senders, because, in our design, the receiver needs to 
handle multiple sessions simultaneously.  
 
3.1 End-hosts: EAC Sender and Receiver 
EAC Sender node model: The node model of the EAC Sender 
(Figure 4) consists of a processor (proc) that is the core of the 
EAC sender, a probe source (pb_src) that generates constant bit 
rate (CBR) probe packets, and a data source (data_src) that 
generates CBR or variable bit rate (VBR) data traffic. proc uses 
two statistic wires to control when data and probe sources start 
or stop generating traffic. A built-in transmitter xmt sends the 
probe or data traffic, and a built-in receiver processor rcv 
receives feedback packets from the receiver. 

 
Figure 4: EAC Sender node model. 

 
EAC Sender process model: The EAC Sender process model 
(proc) is shown Figure 5. In the init state, proc loads the 
attributes and registers the statistics. It then enters the probe state 
to trigger the probe source to generate probe packets. Upon 
receiving an empty packet from the pb_src, proc sets the fields 
in the header and sends the packet to the receiver. If a negative 
feedback arrives, the sender starts probing again for a new 
session after a pause that is specified in the model interface by 
the user. If a positive feedback arrives on time, proc triggers the 
data_src to start generating traffic. It also detects wrong-
delivered packets (unmatched DA in the packet header) or 
obsolete feedback packets. 

 
Figure 5: EAC Sender process model. 
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EAC Receiver node model: The node model of the EAC 
Receiver consists of a processor, a built-in point-to-point 
receiver, and a built-in point-to-point transmitter.  
 
EAC Receiver process model: The EAC Receiver process 
model is shown in Figure 6. The process begins at init state and 
then enters the idle state. The processor may enter feedback , 
close_session, or rcv_packet states depending on the specific 
event: if a packet arrives, it enters rcv_packet state; if it is time 
to send a feedback, it enters feedback  state and sends a feedback 
packet; and if it detects an obsolete session, it enters 
close_session state to perform garbage collection. 

 
Figure 6: EAC Receiver process model. 

 
In order to handle multiple sessions from different senders 
simultaneously, the receiver employs two hush-tables to store 
the information collected during probe and data phases. Sender’s 
SA, SRC_NET, and Session_ID are combined to form the key of 
the hush-table. The value stored in the hush-table is a user-
defined data structure pk_struct, which is defined in the header 
file and included into the model. The definition of the structure 
is: 
 

typedef pk_struct 
{   state; // three possible values: unused, open, and closed. 

address; // sender ID. 
subnet_id; // subnet that contains the sender. 
pk_num; // number of packets received during the session. 
seq_id; // sequence number of the last received packet.  
trans_rate; // transmission rate used in the current phase.  
trans_dur; // estimated transmission duration. 
loss_num ; // number of packets lost. 
loss_rate ; // (packets sent – packets received)/packets sent 
timer ; //  time of the first packet arrival.  
event;  /* an event handle for setting the timer to invoke the 
action of sending feedback at the end of the probing phase. 
Reference this handle in case of event cancellation. */ 

} 
 
In general, when a packet arrives, the receiver checks the packet 
type and gets sender’s SA, SRC_NET, and Session_ID from the 

packet header. Then, it updates the value in the hush-table and 
processes the packet accordingly.  
 
When a probe packet for a new session arrives, the receiver 
creates an instance of pk_struct using the values obtained from 
the packet header, and then stores the instance into the probe’s 
hush-table. At the same time, the receiver starts a feedback timer 
to invoke the action of sending feedback at the end of the probe 
phase. Upon timeout, the receiver calculates the experienced 
packet loss, makes the admission decision, and sends the 
corresponding feedback. The pseudo code is: 
 

If threshold × SEQ_ID > SEQ_ID - number_received 
Then 

Send positive feedback decision 
Else 

Send negative feedback decision. 
 

In case of the early-reject technique, the probing period is 
divided into several time slots. At the end of each time slot, the 
receiver checks whether the experienced traffic condition is 
beyond the threshold. If so, it sends a negative feedback decision 
immediately, cancels the feedback timer, and closes the session. 
The feedback packet is sent with a higher priority to minimize 
the risk of loss. In our implementation, we opted not to resend 
the feedback packet if it gets lost because an EAC Sender drops 
the session when either no feedback is received on time or the 
received feedback is negative. If the lost feedback packet were 
negative, we assumed that losing it had the same effect as 
receiving it. If the lost feedback packet were positive, it would 
have affected the validity of our assumption. However, in both 
cases, loosing a feedback packet, which has a higher priority, 
implies that the network is most likely congested. Hence, not 
resending a feedback packet is a reasonable option to simplify 
the implementation.  
 
When a data packet arrives, the receiver collects statistics. In 
normal network conditions, the last data packet in a session is 
the FIN packet. Its FLAG field in the packet header is set to FIN. 
Upon receiving a FIN packet, the receiver closes the 
corresponding session. In the case when the FIN packet gets lost, 
the receiver forcibly closes the session that has been idle for too 
long and performs the garbage collection. Timers are 
implemented in the model to invoke the garbage collection 
periodically.  
 
3.2 Router model and its queue process model 
We implemented a relatively simple router model. It has only 
five pairs of ports: four pairs are for the local hosts and the fifth 
pair is the default port for routing packets. In order to avoid 
complicated routing tables and routing rules, we implemented a 
simple routing algorithm: 
 

Check the subnet destination of the incoming packet. 
If the packet is addressed to the local subnet, then  

Get address ID from the packet header, 
Send the packet to the port that matches the address 

ID. 
Else (packet is not addressed to the local subnet) 

If the packet is from a local host, then 
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Route it to the default port.  
Else (the packet is from the default port, i.e., from 
another subnet) 

Route it to the user-specified outgoing port  
(User specifies outgoing port via the model interface before 
starting the simulation.) 

 
We implemented two EAC router models: in-band and out-of-
band. They have identical queue process state diagrams (Figure 
7). The procedures in the queue process model are: 

- Upon packet arrival, router moves from init or idle to 
arrival state;  
- Insert the packet into the corresponding queue if there is 
a space in that queue; if no space, the packet is dropped.  
- Upon successful insertion, if the router is not busy 
serving another packet, it enters svc_start to start a 
service timer, and then goes to idle state to wait for the 
service time finish. If the router is busy, it enters idle state 
directly. 
- Whenever router finishes serving a packet, it enters 
svc_compl state to de-queue the packet based on its 
priority and to send it.  

 

 
Figure 7: Router queue process model. 

 
The  router also increases the HOP_NUM field in the packet 
header. The receiver uses the HOP_NUM to calculate the 
waiting time before forcibly closing an obsolete data session, as 
in the case when the session’s FIN packet is lost. 
 
Although the two-router mo dels have identical process state 
diagram, they have different scheduling algorithms. The in-band 
router stores the data and probe packets in one FIFO queue with 
a buffer size of eight packets, and stores best-effort packets in a 
separate queue with a lower priority and a buffer with no size 
limitation. The out-of-band router stores data and probe packets 
in two separate queues: the queue for data packets has higher 
priority and a buffer size of six packets, while the queue for 
probe packets has lower priority and a buffer size of two 
packets. The rate-limiter discussed in Section 2, which employs 
a weighted round robin algorithm, guarantees that the maximum 
service time used for admission-controlled traffic is 2/3 of the 
entire bandwidth, while the minimum service time used for the 
best-effort traffic is 1/3 of the entire bandwidth. 
 
4 . Performance Evaluation 
In order to illustrate the behavior of EAC schemes, we employ 
two network models. For most simulation scenarios, we use a 
single-hop network model. It has three senders and one receiver 
(Figure 8). We use a multi-hop network model for the simulation 

of the in-band EAC scheme (Figure 22). Traffic source 
parameters are given in Table 1. 
 
We present ten simulation results. Each is illustrated by the data 
loss (data loss vs. time) and probe loss (probe loss vs. time) 
graphs. These are statistics that the receiver module collects 
from all senders over the data and probe phases. Data (or probe) 
loss is the percentage of accumulated data (or probe) packets 
loss with respect to the total data (or probe) packets transmitted 
by all senders at each session over one simulation period. 
Probing and data durations are 10 and 100 sec, respectively. 
 

 
 

Figure 8: Simulation scenario for single-hop network model. 
 

 
    Scenario 

EAC 
sender 
(transmissi
on rate) 
(bps) 

 
Router  
(bps) 

Service 
rate 
(bps) 

Q 
u 
e 
u 
e 

 
Buffer  
  (pk) 

Link 
(bps) 

con_3_sender
_in-band 

CBR (512, 
512, 1024) 

in-band 1024 1 8, 
infinity 

2048 

con_3_sender
_out-of-band 

CBR (512, 
512, 1024) 

out-of-
band 

1000 3    2,6, 
infinity

2048 

bur_3_sender_
in-band 

VBR 
(5120) 

in-
band 

4800 1 8, 
infinity 

9600 

bur_3_sender_
out-of-band 

VBR 
(5120) 

out-of-
band 

6144 3    2,6, 
infinity 

9600 

Multi-hop CBR (600) in-
band 

1024 1 8, 
infinity 

1024 

 

Table 1: Traffic source parameters. 
 
4.1 In-band EAC algorithm 
Figures 9 and 10 show simulation results for the in-band EAC 
model using CBR traffic. They indicate reduced data losses 
when end-hosts control the flow admission. 
  
At the beginning of the simulation, three senders compete to be 
admitted by the receiver. The sender experiencing a probe loss 
rate above the threshold of 0.2 will not be admitted (Figure 9). 
Other senders, experiencing a probe loss less than 0.2, will be 
admitted. Figure 9 indicates that the average data loss is lower 
than the threshold while the maximum data loss is approximately 
0.2. 
In Figure 10, when the threshold increases to 0.5, the maximum 
probe loss during the entire simulation period is below 0.5. 
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Hence, all session-setting attempts from the three senders are 
accepted. All three senders start their first session-setting 
attempts at the beginning of the simulation time simultaneously. 
Because of the large threshold value, all flows are admitted and 
start sending data traffic after the probing phase, which causes 
heavy traffic in the network. Hence, packet loss reaches a peak 
at the beginning. After a while, senders are in different phases of 
their transmission and they are not sending probe or data packets 
simultaneously. Therefore, the traffic gets smoother and both 
probe and data losses start decreasing.   
 

 

Figure 9: In-band EAC model using CBR traffic: probe loss 
and data loss. Receiver has a threshold of 0.2. The three 
senders start the first probing phase at 0 sec. 
 

 
Figure 10: In-band EAC model using CBR traffic: probe loss 
and data loss. Receiver has a threshold of 0.5. The three 
senders start the first probing phase at 0 sec. 
 
We repeated the two simulation scenarios with the VBR traffic 
source. Simulation results are captured with thresholds set at 0.2 
and 0.5 (Figures 11 and 12, respectively). The maximum data 
loss during the simulation period is close to the threshold (0.2 or 
0.5), and the average data loss is below the threshold. Figures 9-
12 indicate that in the case of in-band EAC scheme, the 

maximum data loss is close to the threshold value for both CBR 
and VBR traffic. Hence, the threshold is a reasonable indicator 
of the traffic loss in the case of the in-band EAC algorithm. 
 

 
Figure 11: In-band EAC model using VBR traffic: probe loss 
and data loss. Receiver has a threshold of 0.2. The three 
senders start the first probing phase at 0 sec. 
 

 
Figure 12: In-band EAC model using VBR traffic: probe loss 
and data loss. Receiver has a threshold of 0.5. The three 
senders start the first probing phase at 0 sec. 
 
4.2 In-band EAC algorithm: short probing vs. long probing 
periods  
We investigated the probing period and examined its effect in 
case of the in-band model with VBR traffic. The data 
transmission duration is 100 sec, while simulation duration is 
1,000 sec.  
 
In the simulation scenario where the sender probes for a short 
period, the ratio between probing period and data period is 
approximately 2-3%. Data loss (Figure 13) reaches the 
maximum value of 0.5, twice the threshold. However, the probe 
loss rate is still low. When the ratio increases to 25-30%, the 
data loss decreases to the threshold level (Figure 14). 
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The difference between Figures 13 and 14 indicates that for the 
in-band EAC scheme, long probing can produce better 
measurement accuracy than short probing. However, long 
probing may not be always preferred. Controlling the length of 
the probing period may be used to optimize the network 
performance. 
 

 
Figure 13: In-band EAC model: probe loss and data loss. 
Receiver’s threshold is 0.2. Probing periods of the three 
senders are 2, 2, and 3 sec, respectively.  
 

 
Figure 14: In-band EAC model: probe loss and data loss. 
Receiver’s threshold is 0.2. Probing periods of the three 
senders are 25, 25, and 30 sec, respectively.  
 
We also used link utilization to examine the performance of the 
in-band EAC scheme. Figure 15 shows that short probes cause 
more severe data loss, but permit relatively higher link 
utilization. When the average data loss is above 0.04, utilization 
increases to 50-60%. On the other hand, the utilization is much 
lower (only 40%) in the case when senders use long probing 
periods (Figure 16) because more bandwidth is used for testing 
the network condition.  
 

Figures 15 and 16 imply that admitted flows using short probing 
periods suffer approximately ten-time higher data loss than 
flows using long probing periods, but have roughly 10% higher 
utilization. If resources permit, using long-probing period in in-
band EAC achieves better performance. However, using long 
probing periods may have higher possibility of congesting the 
network. Hence, it is important to choose the right probing 
period.  
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Figure 15: In-band EAC model: data loss rate vs. utilization 
using short probing periods. Receiver’s threshold is 0.2. 
Probing periods of the three senders are 2, 2, and 3 sec, 
respectively.  
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Figure 16: In-band EAC model: data loss rate vs. utilization 
using long probing periods. Receiver’s threshold is 0.2. 
Probing periods of the three senders are 25, 25, and 30 sec, 
respectively. 
 
4.3 Out-of-band EAC algorithm 
The simulation results are different in the case of out-of-band 
EAC algorithm. The network model is the same as in the case of 
in-band scenario, except that the router employs out-of-band 
process model. We performed two simulation runs with CBR 
traffic and two with VBR traffic. The traffic model parameters 
of the end-hosts are identical to the case of in-band simulations.  
Figure 17 is the result captured from the first simulation case for 
the out-of-band EAC algorithm with a CBR traffic and threshold 
value of 0.2. It shows zero data loss, much lower than the value 
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in the case of the in-band EAC model. Nevertheless, the probe 
loss is much higher than the corresponding probe loss in the in-
band model (Figure 9), which indicates that most attempts for 
setting a connection were rejected. 
 
After increasing the threshold to 0.5, probe loss decreases, which 
implies that the number of accepted session setting attempts 
increases. Data loss is zero most of the time (Figure 18). 
Average data loss is far below the threshold. Compared to the 
maximum data loss rate of 0.6 in the case of the corresponding 
in-band EAC simulation (Figure 10), out-of-band algorithm has 
the maximum data loss of only 0.3.  
 

 
Figure 17: Out-of-band EAC model using CBR traffic: probe 
loss and data loss. Receiver’s threshold is 0.2. The three 
senders start the first probing phase at 0 sec. 
 
 

 

Figure 18: Out-of-band EAC model using CBR traffic: probe 
loss and data loss. Receiver’s threshold is 0.5. The three 
senders start the first probing phase at 0 sec. 
 
Figures 19 and 20 show the simulation results for the out-of-
band EAC algorithm with VBR traffic. 
 

 
Figure 19: Out-of-band EAC model using VBR traffic: probe 
loss and data loss. Receiver’s threshold is 0.2. The three 
senders start the first probing phase at 0 sec. 

 
 

 

Figure 20: Out-of-band EAC model using VBR traffic: probe 
loss and data loss. Receiver’s threshold is 0.5. The three 
senders start the first probing phase at 0 sec. 
 
Figures 17-20 show that in the case of out-of-band EAC 
algorithm, data loss is always lower than the threshold and the 
corresponding results for the in-band algorithm. It is difficult to 
relate the threshold to the actual data loss. The probe loss is 
much higher than the corresponding probe loss for the in-band 
algorithm. Unlike the case of the in-band EAC algorithm, in the 
out-of-band EAC case, data traffic has a higher priority than 
probe traffic. Hence, in the case of out-of-band EAC algorithm, 
probe packets are more likely to be lost than data packets if 
congestion occurs. 
 
 
 
4.4 Comparison of the in-band and out-of-band EAC 
algorithms  
From the data loss aspect, out-of-band algorithm always 
achieves lower data loss than in-band EAC algorithm. However, 
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when we examine the number of successful sessions, in-band 
algorithm produces better results. The data shown in Figure 21 is 
obtained under the identical simulation conditions for both in-
band and out-of-band algorithms. The plot shows that in-band 
algorithm permits more flows into the network than the out-of-
band algorithm. 
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Figure 21: Comparsion of the number of accepted sessions 
for in-band and out-of-band EAC models.  
 
Through the simulation experiments with in-band EAC and out-
of-band EAC, we showed that both algorithms have advantages 
and disadvantages. Details are listed in Table 2. 

 
 In-band EAC algorithm Out-of-band EAC 

algorithm 
Data loss Data and probe traffic 

are closely related.  
Threshold may be a good 
predicator.  
Data loss is higher. 

Data loss is much lower. 
It is difficult to relate the 
actual data loss to the 
threshold. 

Flow 
admission 

Easier to admit flows. Flows are not easily 
admitted. 

 

Table 2: Comparison of in-band and out-of-band EAC 
algorithms. 

 
4.5 Multi-hop network 
Simulation results discussed in Sections 4.2-4.4 are based on the 
single-hop network model. We use a multi-hop scenario to 
investigate the EAC behavior when packets have to cross several 
hops to reach the receiver. 
 
In the multi-hop network model (Figure 22), subnet 0 has two 
senders (sender1 and sender3). Subnet 1 has one sender 
(net1_sender2) and one receiver (net1_receiver3). Subnet 2 and 
subnet 3 have one receiver each (receiver3 and receiver2, 
respectively). 

 
Figure 22: Multi-hop network model. 

 

Possible bottleneck 
link 1 

Possible bottleneck 
link 2 

Possible bottleneck 
link 3 
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Senders have identical model parameters, such as probe and data 
transmission rates or probing and data periods, except that the 
DA (destination address ID) and DES_NET (destination subnet 
ID) are different in each simulation scenario. For fairness, 
receivers in the three subnets have identical threshold of 0.2. 
Every sender may set up a session with any receiver. 
 
Senders communicate with various receivers so that packets 
traverse various hops and create bottlenecks in different links in 
the network (Figure 22). We examine the relationships between 
the number of bottlenecks and the number of hops vs. the ratio 
of successful sessions, respectively. Figures 23 and 24 indicate 
that the number of bottlenecks that a connection may experience 
in the network, rather than the number of hops, influences the 
ratio of successful sessions. The number of bottlenecks seems to 
dominate the data loss, while the number of hops does not 
necessarily impair the admission decision. However, a flow 
passing through multiple hops may have higher blocking 
probability because it has a higher chance to traverse more 
bottlenecks. 
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Figure 23: Number of bottlenecks vs. ratio of successful 
sessions. 
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Figure 24: Number of hops vs. ratio of successful sessions. 

5. Conclusions and Open Issues 

Simulation results indicate that EAC is capable of providing 
certain levels of QoS in the network, such as achieving a pre-
defined packet loss probability for a flow. In the case of in-band 
EAC algorithm, a close relationship between the maximum data 
loss and the defined threshold can be maintained. Furthermore, 
using long probing periods can lead to more accurate predication 
of the data loss. Out-of-band EAC algorithm provides better 
QoS with respect to data loss.  
 
For both EAC schemes, a larger number of sessions was 
admitted for CBR, compared to VBR traffic. This implies that 
the more detailed forecast of network traffic is available, the 
sharper the QoS predictions and better network utilization could 
be achieved [8]. Hence, smoothing the traffic using certain 
traffic shaping and policing techniques can help achieve better 
performance.  
 
The measurement and decision-making methods play important 
roles in EAC algorithms. We have fine-tuned the threshold value 
during simulation experiments to achieve better performance 
results. Further developments of EAC algorithm may include 
embedding the current model into the complete OSI stack, 
investigating other traffic probing and measurement techniques, 
and using genuine traffic traces.  
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