
 1

Improving TCP Performance with Periodic Disconnections over
Wireless Links

Wan G. Zeng, Meihua Zhan, Zhiwen Lin, and Ljiljana Trajkovic
Simon Fraser University
Burnaby, B.C. V5A1S6

Email: {wgzeng, mjzhan, zlin, ljilja}@cs.sfu.ca

Abstract
Since 1988, when the congestion control functions were first
introduced, the performance of TCP has been greatly improved.
However, TCP still suffers large performance degradation over
wireless links due to characteristics specific to wireless
environment that affect the behavior of TCP's congestion control
and avoidance mechanisms. These mechanisms were designed
and optimized for traditional wireline networks where packet
losses are predominantly due to network congestion. In wireless
networks, packet losses are mainly caused by the high bit error
rate (BER) and hand-offs. Since TCP cannot differentiate packet
losses caused by congestion from losses introduced by the
wireless links, its performance degrades. M-TCP is a solution
proposed to address the problems of TCP over wireless links
with periodic disconnections.

In this paper, we first give a brief introduction to M-TCP
protocol. We then describe the OPNET implementation of M-
TCP and the simulation scenarios in a mixed wireline/wireless
environment. We give performance comparisons between M-
TCP and TCP with and without presence of frequent
disconnections in wireless links. Simulation results indicate that
in the presence of frequent disconnections M-TCP outperforms
TCP in terms of maintaining congestion window size, goodput,
and sender size retransmission timer.

Keywords: Wireless networks, mobile cellular networks,
TCP/IP, congestion control, quality of service.

1. Introduction
TCP’s congestion control mechanisms [1] were designed and
optimized for traditional wireline networks where packet loss is
predominantly due to network congestion. These mechanisms
greatly improved TCP performance and made TCP the most
popular Internet transport protocol. However, when wireless
networks are merged with wireline networks, TCP performance
largely degrades. In wireless networks, packet losses are mainly
caused by the high BER and hand-offs. Since TCP cannot
differentiate packet losses caused by congestion from losses
introduced by the wireless links, it is unable to handle these
losses separately. This is the main cause for TCP's performance
degradation in a mixed wireless/wireline environment.
Numerous solutions have been proposed [2] - [4] to prevent TCP
from performing unnecessary congestion control when there is
no congestion in the network. M -TCP [4] is one of the solutions
proposed to address the problems of TCP over wireless links
with periodic disconnections, as in the case of frequent hand-
offs.

We have implemented M-TCP in OPNET and have done
performance comparisons between M-TCP and TCP. Simulation
results indicate that in the presence of disconnections M-TCP
has better performance in terms of congestion window size,

goodput, and sender side retransmission timer. Congestion
window size of the M-TCP sender is very close to the window
size in an ideal network without disconnections. There is also a
visible difference between M-TCP and TCP goodputs. The M-
TCP sender side retransmission timer is, again, close to its value
in an ideal network.

This paper is organized as follows. Section 2 provides TCP
overview, describes the properties of regular TCP, and
introduces M-TCP protocol. Section 3 describes OPNET
implementation of M-TCP in a Wireless LAN (WLAN)
network. Section 4 shows the performance comparisons of a
network employing M-TCP protocol with the same network
using regular TCP protocol. We conclude with Section 5.

2. Transmission Control Protocol (TCP)

2.1 TCP Overview
In this section, we discuss TCP’s timer and window
management mechanisms.

To perform congestion control and avoidance, TCP maintains
two windows: the receiver’s advertised window (rwnd) and the
congestion window (cwnd). They define the maximum number
of bytes the receiver may receive and the sender may send,
respectively. The number of bytes that may be sent into the
network is the minimum of the two. Therefore, when rwnd is
large enough, the larger the cwnd, the more data TCP can send
into the network. TCP is known to be acknowledgement (ACK)
paced. With every byte that TCP sends, the sender will wait for
the ACK from the receiver to send the amount of data defined by
cwnd.

TCP detects packet losses in the network by either duplicate
ACKs or retransmission timeouts [1]. Therefore, TCP keeps a
timer called retransmission timer for its timer based
retransmission mechanism. The timer is used to define how long
TCP sender should wait before retransmitting an
unacknowledged packet. Retransmission timeout (RTO) is
calculated based on the estimation of the packet round-trip time
(RTT) in the network. When a packet loss is detected, TCP
considers it as the sign of congestion in the network and shrinks
its cwnd accordingly to limit the amount of data to be sent into
the network. In addition, if the retransmission timer detects the
packet loss, TCP also exponentially increases its RTO.
Repeated losses will force the sender’s cwnd to remain small and
the RTO to remain large, which results in smaller amount of data
being sent into network and longer intervals between each
attempt to probe network connectivity.

TCP moves into persist state when there is data to be sent and
the other end of the connection sends a windows update equal to
zero [1]. In the persist state, TCP freezes all of its states,

 2

including cwnd and retransmission timer, waiting to resume
transmission at any time. The persist timer starts, and when it
expires the sender sends a one-byte packet to probe the other end
of the connection to check if the window is open. A response to
the probe with window size greater than zero will trigger the
sender to leave the persist state and be ready to send new data.

2.2 M-TCP Protocol
M-TCP is a modified version of TCP, designed to specifically
suit wireless connections. It is designed to work with cellular
network infrastructure [5], a typical type of wireless network
architecture. In such wireless networks, congestion control
algorithms introduce difficulties for TCP. A cellular network
infrastructure is typically used to connect mobile users to the
Internet. A geographical region, such as a city or a campus, is
divided into cells. Each cell contains one or more base stations
that provide connection end-points for mobile hosts.

It is likely that in order to provide high-bandwidth wireless
connections, cell sizes will have to be kept small. Small cell size,
unfortunately, results in small cell latency that, in turn, causes
frequent disconnections as a user roams among cells [5]. This
causes serial timeouts at the TCP sender. Because the sender
doubles the retransmission timer with each unsuccessful
retransmission, even when the mobile is reconnected it is
feasible that in most TCP implementations no data could be
transmitted for as long as one min.

Figure 1 shows the network architecture suitable for M-TCP
deployment. It has a three level hierarchy. At the lowest level,
each cell contains mobile hosts (MH) communicating with their
mobile support stations (MSS). A Supervisor Host (SH) controls
several MSSs. The SHs are connected to the wireline network,
and they handle most routing and other protocol details for the
mobile users. They also maintain connections for mobile users,
handle flow-control, and are responsible for maintaining the
negotiated quality of service. These SHs, thus, perform the
function of gateways [5]. The fixed hosts (FH) reside in high-
speed wireline networks.

Figure 1: Proposed architecture [6].

M-TCP takes the split connection approach and divides the
connection into wireline and wireless domains. In the case of
disconnections, the sender is forced into persist state by
receiving persist packets from M-TCP. While in persist state, the
sender will not suffer retransmit timeout, it will not
exponentially back off its retransmission timer, and it will

preserve the size of its congestion window [1]. Hence, when the
connection recovers upon receiving a notification from M-TCP,
the sender will be able to transmit at full speed.

A simplified high-level model of the network is shown in Figure
2. TCP connections are split into two at the SH. The TCP client
at the SH, called SH-TCP, receives data packets transmitted by
the sender (FH) in the wireline network. It passes these packets
to the M-TCP client for delivery to the MH. ACKs received by
M-TCP at the SH are forwarded to SH-TCP for delivery to the
TCP sender. When SH-TCP receives a packet from a TCP
sender, it passes the packet to the M-TCP client, and
acknowledges packet when its ACK is received from the MH.
However, a protocol needs to ensure that the sender does not
trigger congestion control algorithms when MH is temporarily
disconnected or a packet is lost between SH and MH.

Figure 2: Setting up a TCP connection [4].

Because only a new ACK packet with cwnd equals to zero can
force the sender into persist state according to the standard TCP
protocol [1], the last ACK number (the largest acknowledged
sequence number from MH) has to be kept in order to be able to
create such a new ACK packet. When retransmission timeout
occurs, SH-TCP creates and sends this new ACK packet to FH.
This packet will also contain a TCP rwnd equal to zero. Upon
receiving this ACK packet, FH is forced into the persist state.
While in this state, FH will not suffer from retransmission
timeouts, it will not exponentially back off its retransmission
timer, nor will close its congestion window. The state of the
sender does not depend on the length of the disconnection
period.

SH checks for the ACK packets to determine if MH is
reconnected. When the MH is reconnected, it will send a
reconnection ACK to SH. Upon receiving reconnection ACK,
SH will retransmit all the packets that have not been
acknowledged by MH. The new ACK packets will be forwarded
to SH-TCP and FH so that they can resume their transmission
and exit the persist state. Since the sender never times out, it
never performs TCP congestion control. Thus, the sender can
resume transmission at the rate before the packet loss occurred

M-TCP protocol does not take into consideration wireless high
BER because, in most mobile environments, a good wireless link
layer protocol will ensure a small BER seen at the TCP layer.
However, with M-TCP, even in mobile environment with high
BER, the sender can still leave persist state quickly and resume
regular data transmissions. When in persist state, sender
constantly sends persist packets to the receiver who will then be
forced to respond.

High-speed Network

SH SH

Cells

Super Hosts

Mobile Support
Stations (MSS)

Mobile Hosts
(MH)

Cells shared
by both SH

Fixed Host
(FH)

Super Host
(SH)

Mobile Host
(MH)

TCP M-TCP

SH-TCP M-TCP

 3

3. OPNET Implementation
We have implemented M-TCP in OPNET. OPNET provides sets
of standard models that we used for the model development. By
carefully choosing OPNET models from the Model Library, with
only minor modifications we completed the implementation and
performance evaluation of M-TCP.

3.1 OPNET Network Model
We used the network model configuration shown in Figure 3.
Three node models are selected from two standard lists of
OPNET models: Wireless LAN (WLAN) and Ethernet. We use
standard WLAN Ethernet Router model (wlan_ethernet_router)
to model the SH, WLAN Workstation (wlan_wkstn_adv) for
MH, and Ethernet Server (ethernet_server_adv) for FH.
Ethernet Server is a model with server applications running over
TCP/IP and UDP/IP. It has an interface to one Ethernet
connection at 10 Mbps, 100 Mbps, or 1,000 Mbps. These meet
our requirements to have a TCP connection to SH via Ethernet.
WLAN Workstation is chosen for the mobile host for similar
reasons. It represents a workstation with applications running
over TCP/IP and UDP/IP. It supports one underlying WLAN
connection at 1 Mbps, 5.5 Mbps, or 11 Mbps. Lastly, WLAN
Ethernet Router was used to establish connection between FH
and MH because it has the capability of connecting to both
Ethernet (one Ethernet port available) and wireless LAN (one
wireless LAN port available).

Figure 3: Network model.

3.2 OPNET Node Models
We made modifications (described in Section 2.2) only to MH
and SH. There was no need for modifications in the wireline
network domain (including FH). This is one of the most
important features of M-TCP. Most existing mobile TCP
protocols are designed not to require modifications of existing
wireline network components, because majority of the network
components belong to wireline networks. The TCP within MH
is modified into an M-TCP client. Most modifications are
implemented in SH, where the functionality of the original TCP
connection is split into two layers: SH-TCP and M-TCP. The
SH-TCP layer is used for communications between the SH and
the FH on wireline links. The M-TCP layer is used to handle

communications between the SH and the MH in the wireless
links. We now describe in details the modifications to the MH
and SH.

3.3 Modifications to the Mobile Host
Figure 4 shows the MH node model. We modified the ip_encap
process. The modified process, named m_ip_encap, simulates
MH’s temporary disconnection behavior. Packets handled by
this process are dropped periodically. This models the
disconnections between SH and MH. In theory, any processes
along the data path between MH and SH can break the packet
stream. We choose to modify ip_encap for the ease of
implementation. This process is relatively simple. It is
responsible for de-capsulation of IP packets sent to the higher
layer, and en-capsulation of packets into IP packets sent to the
lower layer.

Figure 4: Node model for Mobile Host.

In our implementation, we intercept the network traffic in both
DECAP and ENCAP states of the ip_encap state diagram shown
in Figure 5.

Figure 5: ip_encap state diagram.

 4

Four configurable attributes are implemented to configure the
m_ip_encap process module:
BrokenEnable: If set to 1, periodical disconnection is enabled.
CycleTime: Indicates period (in seconds) between two

disconnections.
BrokenStartTime: The start time of disconnection in each

disconnection cycle.
BrokenEndTime : The end time of disconnection in each

disconnection cycle.

Figure 6 shows a typical simulation configuration, with
CycleTime = 300 sec, BrokenStartTime = 270 sec, and
BrokenEndTime = 300 sec. This generates a 30 sec
disconnection for every 5 min.

Figure 6: Typical simulation configuration.

The C code for a cyclical disconnection in DECAP state is
(Similar code is also implemented in ENCAP state.):

/*If it is time to break the connection, then
* intercept the packets and destroy them.
* Otherwise forward it to next layer.*/
op_pk_nfd_access(pkptr, "fields", &tcp_fd_ptr);
if(!(tcp_fd_ptr->syn || tcp_fd_ptr->fin)
 && isBroken())
{
 ip_encap_pk_destroy(pkptr);
}
else
{
 op_pk_send (pkptr, output_strm);
}

The m_ip_encap state also allows “recovery packet” to reach the
FH when the connection is restored. When the MH recovers
from a disconnection, it will send an ACK packet as a “recovery
packet” to FH to restore the connection. In our implementation,
this ACK packet contains the last ACK number with rwnd
(usually greater than zero).

3.4 Modifications to Super Host
Since we use a WLAN Ethernet router as an SH to directly
connect FH and MH, there is no data stream passed to layers
higher than IP. We modified the ip and ip_encap processes so
that packets will always be directed to higher layers such as M-
TCP. Figure 7 shows the node model of the modified SH, which

has the same structure as the OPNET standard model
wlan_ethernet_router. Modifications are made in processes ip
and ip_encap. We also created a new process model m_tcp.

Figure 7: Modified Node Model of Super Host.

3.4.1 IP Routing Process
Routing is performed in the ip process. The structure of a
standard routing module is shown in Figure 8. Routing task is
performed in ip_dispatch and ip_rte_central_cpu. If the packet
has reached its destination node, the routing part will forward it
to the higher layer such as TCP and UDP. In a router, however,
the packets are routed directly through the ip_rte_central_cpu
module. We modified the ip_rte_central_cpu and let all packets
pass through ip_encap to reach M-TCP process.

Figure 8: Centralized IP Routing Module [7].

The core code to re-route packets is:

static void ip_rte_central_cpu_packet_arrival()
{
 /*Packet arriving from a stream*/
 instrm = op_intrpt_strm ();
 pkptr = op_pk_get (instrm);
 if (pkptr == OPC_NIL)
 ip_rte_cpu_error ("Unable to get packet from
 the input stream.");
 if(((instrm == 1) // From lan arp0
 || (instrm == 2)) // From wireless arp1

ip_dispatch

ip_rte_central_cpu Processing via
CPU interrupt

Forward
invoke

Upper layer
invoke

Stream from
upper layers

Stream from
lower layer

Stream to
QoS

 5

 && (op_id_self() == 723)) // It is a router
 {
 printTrace("Directly sending packet to
 ip-encap");
 //send to ip_encap stream
 op_pk_send(pkptr, 0);
 FOUT;
 }
 }

3.4.2. IP Encap Process
The original ip_encap process is able to decapsulate IP packets
and to encapsulate packets from higher layers. Since our M-
TCP is only a TCP-like layer above ip_encap, we bypass most
functions in ip_encap and let the packets pass through
unchanged. The process model is similar to the model shown in
Figure 5, except that we modified ip_encap for the different
purpose from the modifications made in ip_encap of MH
described in Section 3.3. The additional code in the ENCAP
state is:

// Obtain the packet arriving from a higher
// protocol layer.
input_strm = op_intrpt_strm();
pkptr = op_pk_get (input_strm);
if(pkptr == OPC_NIL)
 ip_encap_error ("Unable to get packet from
 transport layer.");
if(input_strm == INSTRM_FROM_MTCP)
 printTrace("ENCAP sends packet to ip layer");
// Send the packet to IP layer
op_pk_send_forced(pkptr, outstrm_to_network);
goto en1;
}

3.4.3 M-TCP Process
We implemented the M-TCP process model and inserted it into
the transport layer of the SH. Figure 9 shows the M-TCP state
diagram. After initialization (INIT state), the M-TCP process
remains in WAIT state. When a packet arrives, a stream interrupt
is issued, and M-TCP proceeds to HANDLE state where the
packet’s source address is checked. The FH and the MH packets
are handled separately. HANDLE state for FH and MH packets
are described in Figures 10 and 11, respectively. If
retransmission timer expires, such as in the case of MH
disconnections, TIME_OUT state is triggered. The details of
TIME_OUT state is shown in Figure 12.

Figure 9: M-TCP state diagram.

The top-level logic in HANDLE state is:

analyse_incoming_pkt(ip_pkptr);
if(isFromFixHost())
 handle_Fix_Host_Pkt (ip_pkptr);
if(isFromMobileHost())
 handle_Mobile_Host_Pkt(ip_pkptr);

If packet arrives from an FH, it is handled as shown in Figure
10. M-TCP maintains a packet queue in order to retransmit
packets from SH, as opposed to retransmit from FH when
packets are lost between SH and MH. A packet is removed
when its ACK is received from MH. The queue structure that
stores unacknowledged packets is:

typedef struct
{
 Packet * pkt;
 Unsigned seq_num;
 Unsigned data_len;
 Double arr_time;
 Double time_out;
} QueueItem;

For the newly arrived packet, M-TCP first checks if it is a new
packet. A new packed is queued in the received packet queue.

In Figure 10, state SHRINK is defined as the state during MH
disconnection. Otherwise, M-TCP stays in the NOSHRINK
state. In the NOSHRINK state, the timer should be set to the
value of the RTO between SH and MH. Calculation of the
accurate RTO in real time may be difficult. For simplicity, we
have not implemented the RTO calculation and have used a
constant RTO value of 0.4 sec. (The average value from our
simulations was approximately 0.5 sec.) Finally, after the packet
is queued, it is forwarded to MH.

Figure 10: Handling packets from Fixed Host.

fh_last_seq > seq+data_len
F

T

Fh_last_seq = seq+data_len
Queue packet
Set timer = RTO if timer=0

fh_last_ack > ack

Fh_last_ack = ack
T

Send packet to MH

F

transMode = SHRINK

Set timer = 0

Exit

FT

 6

If a packet arrives from MH, it is handled as shown in Figure 11.
If the packet contains a duplicate ACK number, M-TCP checks
the packet queue. If the queue is empty, M-TCP forwards the
packet to FH. This case rarely happens because it implies that a
packet is lost in the wireline network. If this is a new ACK
packet, M-TCP changes from SHRINK to NOSHRINK state
because the new ACK number indicates that MH could have
reconnected and replied to the packet sent by the SH. If the
packet contains a new ACK number, the newly acknowledged
packet in the queue is purged, and the last ACK number reduced
by one is sent to FH.

Figure 11: Handling packets from Mobile Host.

Figure 12: Handling Time-Out.

The timeouts are handled as shown in Figure 12. In order to
handle timeouts, the last ACK number should always be kept.
When there are ACK packets received from MH, M-TCP
acknowledges to FH only the last ACK number reduced by one.
In case of retransmission timeouts at SH, M-TCP generates and
sends a persist packet to FH using this last kept ACK number,
along with rwnd set to zero. This will trigger FH into persist
state. Finally, before M-TCP exits TIME_OUT state, the SH
state is set to SHRINK because the timeout suggests that MH is
disconnected. The timer starts again. This is unnecessary if
there is a mechanism in MH to re-establish the connection and to
generate recovery packet. However, the OPNET WLAN
Workstation model does not have such a mechanism. Instead,
un-acknowledged packets are retransmitted to MH periodically.
MH is forced to respond to these packets if it is connected.
Hence, when MH is re-connected, a reply from MH will force
SH to exit persist state.

4. Performance Comparisons

4.1 Simulation Scenario
We used three simulation scenarios to evaluate the performance
of M-TCP. The objective of our simulations is to compare the
size of the per-connection congestion window. Hence, our
simulation scenarios consist of a single connection between MH
and FH. The application used in this connection is FTP. FTP
performance is observed in the FTP server (residing in FH),
under three simulation scenarios.

Scenario 1. Regular TCP without disconnections: This is the
ideal network situation without any simulated disconnections
between MH and FH. It serves as the baseline for comparisons
with the other two simulation scenarios.

Scenario 2. Regular TCP with disconnections: Regular TCP
protocol is used in both hosts and the router. Disconnections are
scheduled every 5 min. Each disconnection time is 30 sec at the
end of each 5-min disconnection period. 30 sec is chosen
because if the disconnection time is longer than 30 sec in
Scenario 1, the connection will be closed by the FH. In order to
provide comparable result with Scenario 1, we choose 30 sec as
the duration of each disconnection.

Scenario 3. M-TCP with disconnections: We use similar setup
as in Scenario 2, except that M-TCP is deployed in SH and MH.
Disconnections are scheduled every 5 min. Each disconnection
time is scheduled for 30 sec at the end of each 5-min
disconnecting period.

In all three simulation scenarios, FH sends to the network the
same FTP data stream: a large file is transferred from FH to MH.
The FTP file is large so that FH will always have data to send.

4.2 Simulation Results

4.2.1 Congestion Window Size
Figure 13 shows the comparison of the congestion window size
for FH. The M-TCP perfo rmance is very close to the regular
TCP without disconnections. A few horizontal segments in the
M-TCP graph indicate the periods when FH is in persist state
(congestion window is frozen). In contrast, the congestion

transMode = NOSHRINK
and (tcp_last_ack = mh_last_ack or
fh_last_seq = mh_last_ack)

T

F

Exit

tcp_last_ack = fh_last_seq
T

Generate persistent packet
Send persistent packet

F

transMode = NOSHRINK

F

transMode = SHRINK

T

Timer restarts

mh_last_ack > ack

Exit

T

mh_last_ack = ack

F

F

transMode = NOSHRNK
re-transmit queue packet

Send packet
to FH

T

Queue is empty
T

F

mh_last_ack = ack
purge acked packet from queue
ack mh_last_ack – 1 to FH
tcp_last_ack = mh_last_ack – 1

 7

window in case of regular TCP with dis connections decreases
drastically during the disconnection period and is unable to reach
the value in M-TCP. This suggests that M-TCP helps prevent
congestion window from decreasing during disconnections.

Figure 13: Comparison of Congestion Window Sizes: M-TCP

has a larger congestion window than regular TCP with
disconnections.

4.2.2 Goodput
Figure 14 illustrates the goodput for three simulation scenarios.
The top line is the regular TCP in an ideal network. The middle
line is M-TCP with simulated disconnections and the bottom line
is regular TCP with simulated disconnections. It illustrates that
in a network with disconnections, M-TCP has a higher goodput
than regular TCP. This is expected because M-TCP tends to
have larger congestion window size that enables more data to be
transmitted. Moreover, even though each disconnection period
lasts only 30 sec, the performance difference is still visible. In
deployed mobile network environment, the hand-off time may
range from 10 sec to a few minutes [4]. If we have taken into
account the effects of retransmission timer, the difference in
goodput would have been much greater. The longer the
disconnection is, the larger number of packets will be lost and
the longer the retransmission timeout will last. Furthermore, the
longer the retransmission timeout, the longer FH waits to try to
probe the connectivity of the network, and the longer it takes for
FH to re-establish the transmission each time network recovers.

Figure 14: Comparison of goodput: M-TCP has higher

goodput than regular TCP with disconnections.

4.2. 3 Retransmission Timeout (RTO)
Figure 15 indicates the differences in RTOs for three simulation
scenarios. M-TCP has similar RTO as the regular TCP without

disconnections, while the regular TCP with disconnections has a
much higher RTO. This is due to the fact that MH is
disconnected from FH during regular TCP disconnections, while
the FH is shielded from seeing disconnections in case of M-TCP.

Figure 15: Comparison of RTOs: M-TCP achieves a much

smaller RTO than regular TCP with disconnections.

5. Conclusions
In this paper, we described OPNET implementation of M-TCP
protocol for use in mobile networks. M-TCP is designed to
handle frequent disconnections, caused by signal fading and
handoffs. We described simulation scenarios employed to
evaluate the M-TCP performance. The simulation results show
that in case of disconnections, M-TCP outperforms regular TCP
in terms of congestion window size, goodput, and retransmission
timeout. M-TCP’s performance illustrates its ability to reduce
the effect of the periodical network disconnections in wireless
networks.

5 References
[1] W. Stevens, TCP Illustrated, Volume 1. Reading, MA:
Addison-Wesley, Professional Computing Series, 1984.

[2] A. Bakre and B. R. Badrinath, “I-TCP: indirect TCP for
mobile hosts,” in Proceeding of 15th International Conference
on Distributed Computing Systems (ICDCS), Vancouver,
Canada, May 1995, pp. 136-143.

[3] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby
“Performance enhancing proxies,” Internet Draft:
http://community.roxen.com/developers/idocs/drafts/draft-ietf-
pilc-pep-04.html (accessed June 2003).

[4] K. Brown and S. Singh, “M-TCP: TCP for mobile cellular
networks,” ACM SIGCOMM Computer Communication Review,
vol. 27, no. 5, pp. 19-42, October 1997.

[5] K. Brown and S. Singh, “A network architecture for mobile
computing,” in Proceeding of IEEE INFOCOMM , San
Francisco, CA, March 1996, pp. 1388-1396.

[6] S. Singh, “Quality of service guarantees in mobile
computing,” Journal of Computer Communications, vol. 19, no.
4, pp. 359-371, April 1996.

[7] OPNET documentation V.8.0.B, OPNET Technologies Inc.,
Washington DC.

