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Abstract 
Since 1988, when the congestion control functions were first 
introduced, the performance of TCP has been greatly improved. 
However, TCP still suffers large performance degradation over 
wireless links due to characteristics specific to wireless 
environment that affect the behavior of TCP's congestion control 
and avoidance mechanisms. These mechanisms were designed 
and optimized for traditional wireline networks where packet 
losses are predominantly due to network congestion. In wireless 
networks, packet losses are mainly caused by the high bit error 
rate (BER) and hand-offs. Since TCP cannot differentiate packet 
losses caused by congestion from losses introduced by the 
wireless links, its performance degrades. M-TCP is a solution 
proposed to address the problems of TCP over wireless links 
with periodic disconnections. 
 
In this paper, we first give a brief introduction to M-TCP 
protocol. We then describe the OPNET implementation of M-
TCP and the simulation scenarios in a mixed wireline/wireless 
environment. We give performance comparisons between M-
TCP and TCP with and without presence of frequent 
disconnections in wireless links. Simulation results indicate that 
in the presence of frequent disconnections M-TCP outperforms 
TCP in terms of maintaining congestion window size, goodput, 
and sender size retransmission timer. 
 
Keywords: Wireless networks, mobile cellular networks, 
TCP/IP, congestion control, quality of service.  
 
1.  Introduction 
TCP’s congestion control mechanisms [1] were designed and 
optimized for traditional wireline networks where packet loss is 
predominantly due to network congestion.  These mechanisms 
greatly improved TCP performance and made TCP the most 
popular Internet transport protocol. However, when wireless 
networks are merged with wireline networks, TCP performance 
largely degrades.  In wireless networks, packet losses are mainly 
caused by the high BER and hand-offs.  Since TCP cannot 
differentiate packet losses caused by congestion from losses 
introduced by the wireless links, it is unable to handle these 
losses separately.  This is the main cause for TCP's performance 
degradation in a mixed wireless/wireline environment. 
Numerous solutions have been proposed [2] - [4] to prevent TCP 
from performing unnecessary congestion control when there is 
no congestion in the network.  M -TCP [4] is one of the solutions 
proposed to address the problems of TCP over wireless links 
with periodic disconnections, as in the case of frequent hand-
offs.  
 
We have implemented M-TCP in OPNET and have done 
performance comparisons between M-TCP and TCP. Simulation 
results indicate that in the presence of disconnections M-TCP 
has better performance in terms of congestion window size, 

goodput, and sender side retransmission timer. Congestion 
window size of the M-TCP sender is very close to the window 
size in an ideal network without disconnections. There is also a 
visible difference between M-TCP and TCP goodputs. The M-
TCP sender side retransmission timer is, again, close to its value 
in an ideal network. 
 
This paper is organized as follows.  Section 2 provides TCP 
overview, describes the properties of regular TCP, and 
introduces M-TCP protocol.  Section 3 describes OPNET 
implementation of M-TCP in a Wireless LAN (WLAN) 
network.  Section 4 shows the performance comparisons of a 
network employing M-TCP protocol with the same network 
using regular TCP protocol.  We conclude with Section 5. 
 
2.  Transmission Control Protocol (TCP) 
 
2.1 TCP Overview 
In this section, we discuss TCP’s timer and window 
management mechanisms. 
 
To perform congestion control and avoidance, TCP maintains 
two windows: the receiver’s advertised window (rwnd) and the 
congestion window (cwnd).  They define the maximum number 
of bytes the receiver may receive and the sender may send, 
respectively.  The number of bytes  that may be sent into the 
network is the minimum of the two. Therefore, when rwnd is 
large enough, the larger the cwnd, the more data TCP can send 
into the network.  TCP is known to be acknowledgement (ACK) 
paced.  With every byte that TCP sends, the sender will wait for 
the ACK from the receiver to send the amount of data defined by 
cwnd.   
 
TCP detects packet losses in the network by either duplicate 
ACKs or retransmission timeouts [1].  Therefore, TCP keeps a 
timer called retransmission timer for its timer based 
retransmission mechanism.  The timer is used to define how long 
TCP sender should wait before retransmitting an 
unacknowledged packet.  Retransmission timeout (RTO) is 
calculated based on the estimation of the packet round-trip time 
(RTT) in the network.  When a packet loss is detected, TCP 
considers it as the sign of congestion in the network and shrinks 
its cwnd accordingly to limit the amount of data to be sent into 
the network.  In addition, if the retransmission timer detects the 
packet loss, TCP also exponentially increases its RTO.  
Repeated losses will force the sender’s cwnd to remain small and 
the RTO to remain large, which results in smaller amount of data 
being sent into network and longer intervals between each 
attempt to probe network connectivity.  
 
TCP moves into persist state when there is data to be sent and 
the other end of the connection sends a windows update equal to 
zero [1].  In the persist state, TCP freezes all of its states, 
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including cwnd and retransmission timer, waiting to resume 
transmission at any time.  The persist timer starts, and when it 
expires the sender sends a one-byte packet to probe the other end 
of the connection to check if the window is open.  A response to 
the probe with window size greater than zero will trigger the 
sender to leave the persist state and be ready to send new data. 
  
2.2 M-TCP Protocol 
M-TCP is a modified version of TCP, designed to specifically 
suit wireless connections. It is designed to work with cellular 
network infrastructure [5], a typical type of wireless network 
architecture.  In such wireless networks, congestion control 
algorithms introduce difficulties for TCP.  A cellular network 
infrastructure is typically used to connect mobile users to the 
Internet.  A geographical region, such as a city or a campus, is 
divided into cells.  Each cell contains one or more base stations 
that provide connection end-points for mobile hosts.  
 
It is likely that in order to provide high-bandwidth wireless 
connections, cell sizes will have to be kept small. Small cell size, 
unfortunately, results in small cell latency that, in turn, causes 
frequent disconnections as a user roams among cells [5]. This 
causes serial timeouts at the TCP sender.  Because the sender 
doubles the retransmission timer with each unsuccessful 
retransmission, even when the mobile is reconnected it is 
feasible that in most TCP implementations no data could be 
transmitted for as long as one min. 
 
Figure 1 shows the network architecture suitable for M-TCP 
deployment.  It has a three level hierarchy. At the lowest level, 
each cell contains mobile hosts (MH) communicating with their 
mobile support stations (MSS). A Supervisor Host (SH) controls 
several MSSs. The SHs are connected to the wireline network, 
and they handle most routing and other protocol details for the 
mobile users. They also maintain connections for mobile users, 
handle flow-control, and are responsible for maintaining the 
negotiated quality of service. These SHs, thus, perform the 
function of gateways [5].  The fixed hosts (FH) reside in high-
speed wireline networks. 

 

Figure 1: Proposed architecture [6]. 

M-TCP takes the split connection approach and divides the 
connection into wireline and wireless domains. In the case of 
disconnections, the sender is forced into persist state by 
receiving persist packets from M-TCP. While in persist state, the 
sender will not suffer retransmit timeout, it will not 
exponentially back off its retransmission timer, and it will 

preserve the size of its congestion window [1]. Hence, when the 
connection recovers upon receiving a notification from M-TCP, 
the sender will be able to transmit at full speed. 
 
A simplified high-level model of the network is shown in Figure 
2.  TCP connections are split into two at the SH.  The TCP client 
at the SH, called SH-TCP, receives data packets transmitted by 
the sender (FH) in the wireline network. It passes these packets 
to the M-TCP client for delivery to the MH. ACKs received by 
M-TCP at the SH are forwarded to SH-TCP for delivery to the 
TCP sender.  When SH-TCP receives a packet from a TCP 
sender, it passes the packet to the M-TCP client, and 
acknowledges packet when its ACK is received from the MH. 
However, a protocol needs to ensure that the sender does not 
trigger congestion control algorithms when MH is temporarily 
disconnected or a packet is lost between SH and MH. 

 
Figure 2:  Setting up a TCP connection [4]. 

Because only a new ACK packet with cwnd equals to zero can 
force the sender into persist state according to the standard TCP 
protocol [1], the last ACK number (the largest acknowledged 
sequence number from MH) has to be kept in order to be able to 
create such a new ACK packet.  When retransmission timeout 
occurs, SH-TCP creates and sends this new ACK packet to FH. 
This packet will also contain a TCP rwnd equal to zero. Upon 
receiving this ACK packet, FH is forced into the persist state. 
While in this state, FH will not suffer from retransmission 
timeouts, it will not exponentially back off its retransmission 
timer, nor will close its congestion window.  The state of the 
sender does not depend on the length of the disconnection 
period.  
 
SH checks for the ACK packets to determine if MH is 
reconnected. When the MH is reconnected, it will send a 
reconnection ACK to SH.  Upon receiving reconnection ACK, 
SH will retransmit all the packets that have not been 
acknowledged by MH. The new ACK packets will be forwarded 
to SH-TCP and FH so that they can resume their transmission 
and exit the persist state.  Since the sender never times out, it 
never performs TCP congestion control. Thus, the sender can 
resume transmission at the rate before the packet loss occurred 
 
M-TCP protocol does not take into consideration wireless high 
BER because, in most mobile environments, a good wireless link 
layer protocol will ensure a small BER seen at the TCP layer.  
However, with M-TCP, even in mobile environment with high 
BER, the sender can still leave persist state quickly and resume 
regular data transmissions.  When in persist state, sender 
constantly sends persist packets to the receiver who will then be 
forced to respond. 
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3.  OPNET Implementation 
We have implemented M-TCP in OPNET. OPNET provides sets 
of standard models that we used for the model development.  By 
carefully choosing OPNET models from the Model Library, with 
only minor modifications we completed the implementation and 
performance evaluation of M-TCP. 
 
3.1 OPNET Network Model 
We used the network model configuration shown in Figure 3.  
Three node models are selected from two standard lists of 
OPNET models: Wireless LAN (WLAN) and Ethernet. We use 
standard WLAN Ethernet Router model (wlan_ethernet_router) 
to model the SH, WLAN Workstation (wlan_wkstn_adv) for 
MH, and Ethernet Server (ethernet_server_adv) for FH.  
Ethernet Server is a model with server applications running over 
TCP/IP and UDP/IP.  It has an interface to one Ethernet 
connection at 10 Mbps, 100 Mbps, or 1,000 Mbps.  These meet 
our requirements to have a TCP connection to SH via Ethernet.  
WLAN Workstation is chosen for the mobile host for similar 
reasons.  It represents a workstation with applications running 
over TCP/IP and UDP/IP.  It supports one underlying WLAN 
connection at 1 Mbps, 5.5 Mbps, or 11 Mbps.  Lastly, WLAN 
Ethernet Router was used to establish connection between FH 
and MH because it has the capability of connecting to both 
Ethernet (one Ethernet port available) and wireless LAN (one 
wireless LAN port available). 
  

 
Figure 3:  Network model. 

 
3.2 OPNET Node Models 
We made modifications (described in Section 2.2) only to MH 
and SH.  There was no need for modifications in the wireline 
network domain (including FH). This is one of the most 
important features of M-TCP. Most existing mobile TCP 
protocols are designed not to require modifications of existing 
wireline network components, because majority of the network 
components belong to wireline networks.  The TCP within MH 
is modified into an M-TCP client.  Most modifications are 
implemented in SH, where the functionality of the original TCP 
connection is split into two layers: SH-TCP and M-TCP.  The 
SH-TCP layer is used for communications between the SH and 
the FH on wireline links.  The M-TCP layer is used to handle 

communications between the SH and the MH in the wireless 
links.  We now describe in details the modifications to the MH 
and SH. 
 
3.3 Modifications to the Mobile Host 
Figure 4 shows the MH node model.  We modified the ip_encap 
process.  The modified process, named m_ip_encap, simulates 
MH’s temporary disconnection behavior.  Packets handled by 
this process are dropped periodically.  This models the 
disconnections between SH and MH.  In theory, any processes 
along the data path between MH and SH can break the packet 
stream. We choose to modify ip_encap  for the ease of 
implementation.  This process is relatively simple.  It is 
responsible for de-capsulation of IP packets sent to the higher 
layer, and en-capsulation of packets into IP packets sent to the 
lower layer. 

 
Figure 4: Node model for Mobile Host. 

In our implementation, we intercept the network traffic in both 
DECAP and ENCAP states of the ip_encap state diagram shown 
in Figure 5. 

 
Figure 5: ip_encap state diagram. 
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Four configurable attributes are implemented to configure the 
m_ip_encap process module: 
BrokenEnable: If set to 1, periodical disconnection is enabled. 
CycleTime: Indicates period (in seconds) between two 

disconnections. 
BrokenStartTime: The start  time of disconnection in each 

disconnection cycle. 
BrokenEndTime : The end time of disconnection in each 

disconnection cycle. 
 
Figure 6 shows a typical simulation configuration, with 
CycleTime  = 300 sec, BrokenStartTime  = 270 sec, and 
BrokenEndTime  = 300 sec. This generates a 30 sec 
disconnection for every 5 min. 
 

 
Figure 6: Typical simulation configuration. 

The C code for a cyclical disconnection in DECAP state is 
(Similar code is also implemented in ENCAP state.): 
 
/*If it is time to break the connection, then 
* intercept the packets and destroy them. 
* Otherwise forward it to next layer.*/                 
op_pk_nfd_access(pkptr, "fields", &tcp_fd_ptr); 
if(!(tcp_fd_ptr->syn || tcp_fd_ptr->fin) 
   && isBroken() ) 
{  
   ip_encap_pk_destroy(pkptr); 
} 
else  
{  
   op_pk_send (pkptr, output_strm); 
} 
 
The m_ip_encap state also allows “recovery packet” to reach the 
FH when the connection is restored.  When the MH recovers 
from a disconnection, it will send an ACK packet as a “recovery 
packet” to FH to restore the connection.  In our implementation, 
this ACK packet contains the last ACK number with rwnd 
(usually greater than zero). 
 
3.4 Modifications to Super Host 
Since we use a WLAN Ethernet router as an SH to directly 
connect FH and MH, there is no data stream passed to layers 
higher than IP. We modified the ip and ip_encap processes so 
that packets will always be directed to higher layers such as M-
TCP. Figure 7 shows the node model of the modified SH, which 

has the same structure as the OPNET standard model 
wlan_ethernet_router.  Modifications are made in processes ip 
and ip_encap.  We also created a new process model m_tcp. 
 

 
Figure 7: Modified Node Model of Super Host. 

3.4.1 IP Routing Process 
Routing is performed in the ip process. The structure of a 
standard routing module is shown in Figure 8.   Routing task is 
performed in ip_dispatch  and ip_rte_central_cpu. If the packet 
has reached its destination node, the routing part will forward it 
to the higher layer such as TCP and UDP. In a router, however, 
the packets are routed directly through the ip_rte_central_cpu 
module.  We modified the ip_rte_central_cpu and let all packets 
pass through ip_encap to reach M-TCP process.  
 

 
Figure 8: Centralized IP Routing Module [7]. 

The core code to re-route packets is:  
 
static void ip_rte_central_cpu_packet_arrival() 
{ 
    /*Packet arriving from a stream*/ 
  instrm = op_intrpt_strm (); 
  pkptr = op_pk_get (instrm); 
  if (pkptr == OPC_NIL) 
    ip_rte_cpu_error ("Unable to get packet from 
      the input stream."); 
  if(((instrm == 1 ) // From lan arp0 
    || (instrm == 2)) // From wireless arp1 

ip_dispatch 

ip_rte_central_cpu Processing via 
CPU interrupt 

Forward 
invoke 
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    && (op_id_self() == 723)) // It is a router 
  { 
    printTrace("Directly sending packet to  
      ip-encap"); 
    //send to ip_encap stream 
    op_pk_send( pkptr, 0 ); 
    FOUT; 
  } 
  } 
 
3.4.2. IP Encap Process 
The original ip_encap process is able to decapsulate IP packets 
and to encapsulate packets from higher layers.  Since our M-
TCP is only a TCP-like layer above ip_encap, we bypass most 
functions in ip_encap and let the packets pass through 
unchanged.  The process model is similar to the model shown in 
Figure 5, except that we modified ip_encap for the different 
purpose from the modifications made in ip_encap of MH 
described in Section 3.3.  The additional code in the ENCAP 
state is: 
 
// Obtain the packet arriving from a higher 
// protocol layer. 
input_strm = op_intrpt_strm(); 
pkptr = op_pk_get (input_strm); 
if(pkptr == OPC_NIL) 
   ip_encap_error ("Unable to get packet from 
      transport layer."); 
if(input_strm == INSTRM_FROM_MTCP) 
   printTrace("ENCAP sends packet to ip layer"); 
// Send the packet to IP layer 
op_pk_send_forced(pkptr, outstrm_to_network ); 
goto en1; 
} 
 
3.4.3 M-TCP Process 
We implemented the M-TCP process model and inserted it into 
the transport layer of the SH.  Figure 9 shows the M-TCP state 
diagram. After initialization (INIT  state), the M-TCP process 
remains in WAIT state. When a packet arrives, a stream interrupt 
is issued, and M-TCP proceeds to HANDLE state where the 
packet’s source address is checked.  The FH and the MH packets 
are handled separately. HANDLE  state for FH and MH packets 
are described in Figures 10 and 11, respectively.  If 
retransmission timer expires, such as in the case of MH 
disconnections, TIME_OUT state is  triggered. The details of 
TIME_OUT state is shown in Figure 12. 
 
 

 
Figure 9: M-TCP state diagram. 

The top-level logic in HANDLE state is: 
 
analyse_incoming_pkt( ip_pkptr ); 
if(isFromFixHost()) 
   handle_Fix_Host_Pkt ( ip_pkptr ); 
if(isFromMobileHost()) 
   handle_Mobile_Host_Pkt( ip_pkptr ); 
 
If packet arrives from an FH, it is handled as shown in Figure 
10.  M-TCP maintains a packet queue in order to retransmit 
packets from SH, as opposed to retransmit from FH when 
packets are lost between SH and MH.  A packet is removed 
when its ACK is received from MH.  The queue structure that 
stores unacknowledged packets is: 
 
typedef struct 
{ 
  Packet * pkt; 
  Unsigned seq_num; 
  Unsigned data_len; 
  Double arr_time; 
  Double time_out; 
} QueueItem; 
 
For the newly arrived packet, M-TCP first checks if it is a new 
packet.  A new packed is queued in the received packet queue.   
 
In Figure 10, state SHRINK is defined as the state during MH 
disconnection. Otherwise, M-TCP stays in the NOSHRINK 
state.  In the NOSHRINK state, the timer should be set to the 
value of the RTO between SH and MH.  Calculation of the 
accurate RTO in real time may be difficult.  For simplicity, we 
have not implemented the RTO calculation and have used a 
constant RTO value of 0.4 sec. (The average value from our 
simulations was approximately 0.5 sec.) Finally, after the packet 
is queued, it is forwarded to MH. 

 
Figure 10: Handling packets from Fixed Host. 
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If a packet arrives from MH, it is handled as shown in Figure 11.  
If the packet contains a duplicate ACK number, M-TCP checks 
the packet queue.  If the queue is empty, M-TCP forwards the 
packet to FH.  This case rarely happens because it implies that a 
packet is lost in the wireline network.  If this is a new ACK 
packet, M-TCP changes from SHRINK to NOSHRINK state 
because the new ACK number indicates that MH could have 
reconnected and replied to the packet sent by the SH.  If the 
packet contains a new ACK number, the newly acknowledged 
packet in the queue is purged, and the last ACK number reduced 
by one is sent to FH. 
 

 

Figure 11: Handling packets from Mobile Host. 

 
Figure 12: Handling Time-Out. 

The timeouts are handled as shown in Figure 12.  In order to 
handle timeouts, the last ACK number should always be kept.  
When there are ACK packets received from MH, M-TCP 
acknowledges to FH only the last ACK number reduced by one.  
In case of retransmission timeouts at SH, M-TCP generates and 
sends a persist packet to FH using this last kept ACK number, 
along with rwnd set to zero.  This will trigger FH into persist 
state.  Finally, before M-TCP exits TIME_OUT state, the SH 
state is set to SHRINK because the timeout suggests that MH is 
disconnected.  The timer starts again.  This is unnecessary if 
there is a mechanism in MH to re-establish the connection and to 
generate recovery packet.  However, the OPNET WLAN 
Workstation model does not have such a mechanism.  Instead, 
un-acknowledged packets are retransmitted to MH periodically.  
MH is forced to respond to these packets if it is connected. 
Hence, when MH is re-connected, a reply from MH will force 
SH to exit persist state. 
 
4.  Performance Comparisons 
 
4.1 Simulation Scenario 
We used three simulation scenarios to evaluate the performance 
of M-TCP. The objective of our simulations is to compare the 
size of the per-connection congestion window. Hence, our 
simulation scenarios consist of a single connection between MH 
and FH. The application used in this connection is FTP. FTP 
performance is observed in the FTP server (residing in FH), 
under three simulation scenarios. 
 
Scenario 1. Regular TCP without disconnections:  This is the 
ideal network situation without any simulated disconnections 
between MH and FH. It serves as the baseline for comparisons 
with the other two simulation scenarios. 
 
Scenario 2. Regular TCP with disconnections:  Regular TCP 
protocol is used in both hosts and the router.  Disconnections are 
scheduled every 5 min.  Each disconnection time is 30 sec at the 
end of each 5-min disconnection period.  30 sec is chosen 
because if the disconnection time is longer than 30 sec in 
Scenario 1, the connection will be closed by the FH. In order to 
provide comparable result with Scenario 1, we choose 30 sec as 
the duration of each disconnection. 
 
Scenario 3. M-TCP with disconnections:  We use similar setup 
as in Scenario 2, except that M-TCP is deployed in SH and MH.   
Disconnections are scheduled every 5 min.  Each disconnection 
time is scheduled for 30 sec at the end of each 5-min 
disconnecting period.  
 
In all three simulation scenarios, FH sends to the network the 
same FTP data stream: a large file is transferred from FH to MH.  
The FTP file is large so that FH will always have data to send. 
 
4.2 Simulation Results 
 
4.2.1 Congestion Window Size 
Figure 13 shows the comparison of the congestion window size 
for FH. The M-TCP perfo rmance is very close to the regular 
TCP without disconnections.  A few horizontal segments in the 
M-TCP graph indicate the periods when FH is in persist state 
(congestion window is frozen). In contrast, the congestion 
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window in case of regular TCP with dis connections decreases 
drastically during the disconnection period and is unable to reach 
the value in M-TCP. This suggests that M-TCP helps prevent 
congestion window from decreasing during disconnections. 
 

 
Figure 13: Comparison of Congestion Window Sizes: M-TCP 

has a larger congestion window than regular TCP with 
disconnections. 

 
4.2.2 Goodput 
Figure 14 illustrates the goodput for three simulation scenarios. 
The top line is the regular TCP in an ideal network. The middle 
line is M-TCP with simulated disconnections and the bottom line 
is regular TCP with simulated disconnections.  It illustrates that 
in a network with disconnections, M-TCP has a higher goodput 
than regular TCP. This is expected because M-TCP tends to 
have larger congestion window size that enables more data to be 
transmitted.  Moreover, even though each disconnection period 
lasts only 30 sec, the performance difference is still visible.  In 
deployed mobile network environment, the hand-off time may 
range from 10 sec to a few minutes [4].  If  we have taken into 
account the effects of retransmission timer, the difference in 
goodput would have been much greater.  The longer the 
disconnection is, the larger number of packets will be lost and 
the longer the retransmission timeout will last.  Furthermore, the 
longer the retransmission timeout, the longer FH waits to try to 
probe the connectivity of the network, and the longer it takes for 
FH to re-establish the transmission each time network recovers. 
 

 
Figure 14: Comparison of goodput: M-TCP has higher 

goodput than regular TCP with disconnections. 
 

4.2. 3 Retransmission Timeout (RTO) 
Figure 15 indicates the differences in RTOs for three simulation 
scenarios.  M-TCP has similar RTO as the regular TCP without 

disconnections, while the regular TCP with disconnections has a 
much higher RTO. This is due to the fact that MH is 
disconnected from FH during regular TCP disconnections, while 
the FH is shielded from seeing disconnections in case of M-TCP. 
 

 
Figure 15: Comparison of RTOs: M-TCP achieves a much 

smaller RTO than regular TCP with disconnections. 

 
5.  Conclusions 
In this paper, we described OPNET implementation of M-TCP 
protocol for use in mobile networks.  M-TCP is designed to 
handle frequent disconnections, caused by signal fading and 
handoffs.  We described simulation scenarios employed to 
evaluate the M-TCP performance. The simulation results show 
that in case of disconnections, M-TCP outperforms regular TCP 
in terms of congestion window size, goodput, and retransmission 
timeout.  M-TCP’s performance illustrates its ability to reduce 
the effect of the periodical network disconnections in wireless 
networks. 
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