
 1111

OPNET Implementation of OPNET Implementation of OPNET Implementation of OPNET Implementation of the the the the Megaco/H.248 Protocol:Megaco/H.248 Protocol:Megaco/H.248 Protocol:Megaco/H.248 Protocol:
MultiMultiMultiMulti----Call and MultiCall and MultiCall and MultiCall and Multi----Connection Connection Connection Connection ScenariosScenariosScenariosScenarios

Edlic Yiu, Edwood Yiu, and Ljiljana Trajković
Simon Fraser University

Vancouver, British Columbia, Canada
E-mail: {enyiu, eyiu, ljilja}@cs.sfu.ca

AbstractAbstractAbstractAbstract
In this paper, we describe the OPNET implementation of
MEGACO/H.248 signaling protocol. The OPNET model allows
for multi-call and multi-connection scenarios, where any number
of Media Gateways (MGs) can simultaneously connect to the
Media Gateway Controller (MGC). This design is important for
simulations of simultaneous voice conversations. In our
simulation scenario, multiple MGs can connect to one MGC via
a router. We simulated the call-establishment, call-waiting, and
call-release scenarios by employing a complete set of
MEGACO/H.248 signaling commands. We also simulated voice
transmission using packets encoded with the Real-Time
Transport Protocol (RTP).

1. Introduction1. Introduction1. Introduction1. Introduction
Voice over IP (VoIP) technology is currently finding its place in
the telecommunication market. It enables a telecommunication
company to cut cost by allowing a single network to transmit
both data and voice traffic. In addition, VoIP technology is
gaining popularity in both commercial and residential markets
because the voice quality resulting from packets transmitted over
the IP network is comparable to the voice quality resulting from
analog signals sent over the Public Switched Telephone Network
(PSTN). The MEGACO/H.248 signaling protocol was
introduced by the Internet Engineering Task Force (IETF) and
International Telecommunication Union (ITU) to help control
and manage the increasing volume of VoIP traffic.

With the emergence of VoIP technology, voice traffic is no
longer restricted to the circuit-switched network. New IP-based
products, such as IP phones and voice cable modems, have been
introduced to integrate voice services over the data network. To
properly manage and control these voice services, various
signaling protocols have been developed. One of these protocols
is MEGACO/H.248. It provides the master/slave architecture for
controlling VoIP traffic.

The MEGACO/H.248 signaling protocol employs a call control
concept. The call control “intelligence” or the master server
resides in the Media Gateway Controller (MGC), while the
Media Gateway (MG) serves as the slave device (dumb
terminal). This concept reduces the complexity of the gateway,
making it easier and more suitable for mass deployment.

In this paper, we describe the implementation and simulation of
the MEGACO/H.248 protocol using OPNET. All eight
MEGACO commands are implemented: Add, AuditCapabilities,
AuditValue, Modify, Move, Notify, ServiceChange, and
Subtract. The OPNET implementation permits the addition of
multiple MGs. This flexibility is important for realistic
simulation scenarios where many voice conversations occur

simultaneously. Several MGs are connected to a single MGC via
a router. We verified all signaling commands and simulated the
MG registration, call-establishment, call-waiting, and call-
release scenarios. To verify that voice calls were actually
established, we generated voice packets encoded using the RTP
protocol.

Section 2 describes the history and basic architecture of the
MEGACO/H.248 protocol. Sections 3 and 4 describe the design
of the MEGACO/H.248 protocol, while Section 5 describes its
OPNET implementation. Various call flow simulation scenarios
are given in Section 6. Simulation results are presented in
Section 7. We conclude with Section 8.

2. MEGACO/H.248 Protocol2. MEGACO/H.248 Protocol2. MEGACO/H.248 Protocol2. MEGACO/H.248 Protocol
2.1. History2.1. History2.1. History2.1. History
In traditional circuit-switched networks, call setups are
performed primarily through the backbone of the telephone
network. As a result, a proprietary signaling protocol can be
used for establishing and deleting connections. However, a well-
defined signaling protocol is required for VoIP because VoIP
traffic is routed through the public network infrastructure.

Various signaling protocols have been designed to control VoIP
traffic. Peer-to-peer protocols, such as SIP and H.323, have been
introduced. However, for large-scale deployments, these
protocols have scalability problems. Hence, a new architecture
for signaling protocols was proposed. The control and the media
gateway components were re-defined using the master/slave
architecture. Figure 1 shows the evolution of the
MEGACO/H.248 protocol.

Figure 1: Evolution of the MEGACO/H.248 Protocol [1].

2.2. Gateway2.2. Gateway2.2. Gateway2.2. Gateway Architecture Architecture Architecture Architecture
The MEGACO/H.248 protocol employs the master/slave
architecture, where the MGC acts as a master server, while the
MG behaves like a slave device. Figure 2 illustrates the

 2222

simplified gateway architecture. In a deployed
telecommunication network, one MGC may control multiple
MGs.

Figure 2: The Master/Slave Architecture.

2.3. Media Gateway Controller2.3. Media Gateway Controller2.3. Media Gateway Controller2.3. Media Gateway Controller
The MGC is the central point of intelligence for call signaling. It
maintains the states of each MG and responds appropriately to
any event notification. For instance, upon receiving an off-hook
event from an MG, the MGC instructs the MG to play the dial
tone and listen for the dual tone multi-frequency (DTMF) tones.

2.4. Media Gateway2.4. Media Gateway2.4. Media Gateway2.4. Media Gateway
The master/slave architecture was designed to eliminate
processor-intensive functionalities from the MG. Due to the
reduced complexity, the cost of MG is much lower than the cost
of MGC, making it more affordable to the commercial and
residential markets. Essentially, the MG is a dumb terminal
awaiting commands from the MGC for its next actions. Upon the
successful creation of a connection, the MG is also responsible
for streaming the voice packets over the IP backbone using
various encoding/compression algorithms.

2.5. MEGACO/H.248 Command Set2.5. MEGACO/H.248 Command Set2.5. MEGACO/H.248 Command Set2.5. MEGACO/H.248 Command Set
The commands supported by the MEGACO/H.248 protocol are:

[MGC ↔ MG]

• ServiceChange – Notify the responder of the new service
state

[MGC → MG]

• AuditValue – Determine the characteristics of an
endpoint

• AuditCapabilities – Determine the capability of an endpoint
• Add – Add a connection
• Modify – Change a connection characteristic
• Subtract – Tear down a connection
• Move – Move an endpoint from one connection

to another connection (call-waiting)

[MG → MGC]
• Notify – Notify the responder of an event (on-

hook)

3. Design Architecture3. Design Architecture3. Design Architecture3. Design Architecture
We have designed two core modules for the MEGACO/H.248
protocol: MGC and MG.

3.1. MGC Architecture3.1. MGC Architecture3.1. MGC Architecture3.1. MGC Architecture
The MGC consists of three main components as shown in Figure
3: Message Receiver (MR), Message Processor (MP), and
Message Sender (MS).

Figure 3: MGC Design Architecture [1].

The main responsibility of the Message Receiver is to parse the
received messages. The Message Processor is built with the
intelligence to handle all eight MEGACO/H.248 commands and
to control all MGs in the system. The Message Sender is used to
compose and transmit MEGACO messages to MGs.

In our implementation, communications among three
components are achieved via local function calls. Upon
receiving an event notification message from the MG, the MGC
reads the statuses of the related MGs and instructs them with one
or more MEGACO/H.248 commands. The responsibilities of
each component are summarized in Table 1.

Component Responsibility

Message
Receiver

• Receive MEGACO messages from the MGs
• Extract parameters from MEGACO

messages
• Redirect message parameters to MP

Message
Processor

• Receive message parameters from MR
• Read statuses of the related MGs
• Determine actions for the related MGs
• Request MS to compose response messages

if necessary

Message
Sender

• Receive requests from MP
• Compose MEGACO messages
• Send MEGACO messages to the MGs

Table 1: Component Responsibilities in the MGC.

3.2. MG Architecture3.2. MG Architecture3.2. MG Architecture3.2. MG Architecture
The MG consists of five components: Message Receiver (MR),
Message Processor (MP), Message Sender (MS), User Interface

 3333

(UI), and Voice Generator (VG). Figure 4 illustrates the design
architecture of the MG.

The functionalities of the Message Receiver and Message
Sender in the MG are similar to those in the MGC. The Message
Processor is built to handle any commands sent from the MGC.
Upon receiving a command from the MGC, the Message
Processor responds accordingly, as listed in Section 2.5.

The User Interface component initiates various events, such as
off-hook, flash-hook, and on-hook. Once an event is initiated,
the corresponding event notification message is sent to the MGC
via the Message Processor and the Message Sender.

Figure 4: MG Design Architecture [1].

The Voice Generator is responsible for generating voice packets
upon call establishment. These voice packets are then
encapsulated into the RTP payload and sent over the network.

Similar to the MGC, communications between MG components
are accomplished through local function calls. Table 2
summarizes the responsibilities of each component.

Component Responsibility

Message
Receiver

• Receive MEGACO messages from the MGC
• Extract parameters from MEGACO messages
• Redirect message parameters to the MP

Message
Processor

• Receive message parameters from the MR
• Respond according to Section 2.5
• Request the MS to compose response

messages if necessary

Message
Sender

• Receive requests from the MP
• Compose MEGACO message
• Send MEGACO messages to the MGC

User
Interface

• Receive user request via the object attribute
• Request the MS to compose transaction

message

Voice
Generator

• Generate voice packets
• Encapsulate voice packet into RTP payloads
• Send RTP messages to other MGs

Table 2: Component Responsibilities in the MG.

4. Design Co4. Design Co4. Design Co4. Design Considerationsnsiderationsnsiderationsnsiderations
4.1. Unlimited Number of MGs4.1. Unlimited Number of MGs4.1. Unlimited Number of MGs4.1. Unlimited Number of MGs
In order to support the multi-call and multi-connection scenario,
the MG architecture needs to support an unlimited number of
MGs. Our implementation utilizes a linked-list to keep track of
the MGs. This design enables an unlimited number of MG
interconnections.

4.2. Control Intelligence in MGC4.2. Control Intelligence in MGC4.2. Control Intelligence in MGC4.2. Control Intelligence in MGC
To illustrate the complexity in the multi-call and multi-
connection scenarios, we describe three cases for the Subtract
command:

Case 1: MG1 talks with MG2. Then, MG2 hangs up by sending

the Notify command to the controller. Since MG1 is not
involved in any other connection, the controller sends
to both gateways the Subtract commands.

Figure 5: Call Release for the Connection of 2 MGs.

Case 2: Initially, MG1 talks with MG2. Then, MG3 calls MG2

and MG2 decides to switch line to talk with MG3. After
a while, MG3 hangs up. Since an inactive connection
still exists between MG1 and MG2, the controller will
send to MG2 a Move command with the SendReceive
parameter to activate the connection between MG1 and
MG2. At the same time, the Subtract command is sent
to MG3.

Figure 6: Call Release for the Connection of 3 MGs.

Case 3: First, MG2 talks with MG3. Then, MG1 calls MG2 and

MG4 calls MG3. Both MG2 and MG3 switch line to
create connections with the new callers. After a while,
MG4 decides to hang up. Since MG2 is still talking
with MG1, no active connection exists between MG2
and MG3. As a result, the controller needs to send MG3
a Move command with the ReceiveOnly parameter and
the Subtract command to MG4. This case is different
from the Case 2 because the controller does not send
the Move command with the SendReceive parameter.

 4444

Figure 7: Call Release for the Connection of four MGs.

4.3. Object Attributes in MG 4.3. Object Attributes in MG 4.3. Object Attributes in MG 4.3. Object Attributes in MG
In order to support multi-call and multi-connection environment,
the MG implementation is based on the object-oriented concept.
Each MG stores its own data and contains its own object
attributes. With such a design, any number of MGs can be added
to the simulation scenario. Figure 8 shows the Object Attributes
dialog box for the configurable data, such as IP address and IP
port.

Figure 8: MG Object Attribute Dialog Box.

5. OPNET Implementation5. OPNET Implementation5. OPNET Implementation5. OPNET Implementation
The OPNET node model permits any number of MGs to be
registered with the MGC. Therefore, a variety of network
topologies can be readily configured. Various network
topologies are used in our simulation. The simulation results are
given in Section 7.

Three OPNET node models have been implemented: Router
Node, MGC Node, and MG Node.

5.1. Router Node5.1. Router Node5.1. Router Node5.1. Router Node
As shown in Figure 9, the router node model consists of eleven
transmitters, eleven receivers, and one router processor. The
router processor is responsible for routing traffic from a receiver
to a transmitter.

Figure 9: Router Node Model.

Figure 10 illustrates the state machine for the router processor,
which consists of two states: idle and route_pk. The initial state
of the router processor is the idle state, which waits for the
arrival of packets. Upon receiving packets, the state machine
proceeds to the route_pk state. In this state, the router processor
relays packets to the appropriate recipients.

Figure 10: Router Process Model.

5.2. MGC Node5.2. MGC Node5.2. MGC Node5.2. MGC Node
Figure 11 shows the node model of the MGC. The MGC node
model consists of a transmitter, a receiver, and the MGC
processor. The MGC processor is responsible for parsing
MEGACO messages, determining necessary actions for the
MGs, and composing the MEGACO messages.

Figure 11: MEGACO MGC Node Model.

The MGC process model, shown in Figure 12, has four states:
init, idle, send, and process. The init state initializes all the
resources in the MGC. Upon successful initialization, the system
proceeds to the idle state, where it either waits for the MGs to
respond or for the MGs to send new MEGACO requests. The
system enters to the process state when new MEGACO
messages arrive. In this state, the received messages are parsed
and appropriate responses to the MGs are generated. These

 5555

responses are placed in an outgoing queue where they are
periodically transmitted when the system enters the send state.

Figure 12: MGC Finite State Machine (Process Model).

5.3. MG Node5.3. MG Node5.3. MG Node5.3. MG Node
The MG node, shown in Figure 13, consists of a transmitter, a
receiver, and the MG processor. The MG processor is
responsible for handling MEGACO/H.248 commands sent from
the MGC and detecting events initiated by the user. Furthermore,
RTP packets are generated by the MG processor for voice
transmission.

Figure 13: MEGACO MG Node Model.

Figure 14 shows the state machine of the MG processor, which
consists of the init, idle, msg_pr, mg_pr, and usr_pr states. The
MG objects are initialized in the init state. After the
initialization, the state machine proceeds to the idle state. In this
state, the process waits for the periodic interrupt and packet
arrival. When the state machine receives a regular interrupt in
the idle state, it enters the usr_pr state. The state machine checks
whether an event was initiated by the user. If an event was
initiated, a corresponding event notification message is sent to
the MGC. In this state, the state machine also checks for call
establishment. Once a call is established, the state machine
generates an RTP voice stream to the corresponding MG. Upon
receiving a message in the idle state, the state machine proceeds
to the msg_pr state where the packet type is determined. If a
signaling command is received, the state machine moves to the
mg_pr state where the command gets processed. Alternately, if a
RTP packet is received, the state machine moves to the usr_pr
state where the MG object statistics are updated.

Figure 14: MG Finite State Machine (Process Model).

6. Call Flow Scenario6. Call Flow Scenario6. Call Flow Scenario6. Call Flow Scenario
Four basic call flow scenarios were defined to validate the
implementation of the eight MEGACO/H.248 commands. These
scenarios are MG Registration Procedure, Call Setup Procedure,
Call Waiting Procedure, and Call Release Procedure. These
scenarios are described in the following subsections, where the
MEGACO/H.248 commands and main parameters are included
within the sequence diagrams.

6.1. MG Registration Procedure6.1. MG Registration Procedure6.1. MG Registration Procedure6.1. MG Registration Procedure
The first procedure when the MG starts is to register with the
MGC using the ServiceChange command (1). This command
enables the MGC to detect and maintain the status of the MG.
The MGC then issues the AuditCapability command (3) to
determine what functionalities are available for the MG. The
MGC also issues the Modify command (5) to request the
notification of a key-down event or an off-hook event. The
sequence diagram for the MG Registration Procedure is shown
in Figure 15.

(1)

ServiceChange Request
(Method = Restart,Profile = IPPhone/1)

(6)

(5)

(4)

(3)

(2)

ServiceChange Reply
Response to 1

AuditCapability Reply
Response to 3

AuditCapability Request
(Audit = event, signal, and media)

Modify Request
(Event = key/kd)

Modify Request
Response to 5

MGCMG

Figure 15: MG Registration Sequence Diagram.

 6666

6.2. Call Setup Procedure6.2. Call Setup Procedure6.2. Call Setup Procedure6.2. Call Setup Procedure
When a user picks up the phone (MG1), a Notify command (1) is
generated to the MGC. The MGC then requests MG1 to play a
dial tone, to listen for the DTMF tones, and to detect the key
down (on-hook) event via the Modify command (3). After the
user specifies the remote location, the Notify command (5) with
the destination address is forwarded to MGC. MGC then creates
a connection between MG1 and MG2 with two Add commands
(7) (9) and one Modify command (11). When the user at the
remote end picks up the phone (MG2), a Notify command (13) is
generated to the MGC. Finally, MGC sends each phone a Modify
command to establish a media stream between the two gateways.
Encapsulated within the Modify command (15) (17) is a request
to stop the ringing signals and to set up the notification
mechanism for an on-hook event. The flow diagram for the Call
Setup Procedure is shown in Figure 16.

(1)

(6)

(5)

(4)

(3)

(2)

Notify Request
(ObservedEvent = key/kd)

Notify Reply
Response to 1

Modify Request
(Event = key/ku and dd/ce,

Signal = cg/dt)

Modify Reply
Response to 3
Notify Request

(ObservedEvent = dd/ce
{IP of MG2})

Notify Reply
Response to 5

Add Request
(Context ID = 1,

Termination ID = at/hf,
Termination ID = tr,

Media LocalControl = RecvOnly,
LocalDescriptor)

Add Reply
Response to 7

Specific LocalDescriptor

(7)

(8)

Add Request
(Context ID = 1,

Termination ID = at/hf,
Signal = cg/rt,

Termination ID = tr,
Media LocalControl = SdRecv,

LocalDescriptor,
Specific RemoteDescriptor)

Add Reply
Response to 9

Specific LocalDescriptor

(9)

(10)

(15)

(14)

(13)

(12)

(11)

(17)

(16)

Modify Request
(Context ID = 1,

Termination ID = at/hf,
Signal = cg/rt,

Termination ID = tr,
Specific RemoteDescriptor)

Modify Reply
Response to 11

Notify Request
(ObservedEvent = key/kd)

Notify Reply
Response to 13

Modify Reply
Response to 17

Modify Reply
Response to 15

Modify Request
(Context ID = 1,

Event = key/ku and key/kf,
Signal = {})

Modify Request
(Context ID = 1,

Event = key/ku and key/kf,
Terminaion ID = at/hf,

Signal = {},
Terminaion ID = tr,

Media LocalControl = SdRecv)

(18)

MG1 MGC MG2

Figure 16: Call Setup Sequence Diagram.

6.3. Call Waiting Procedure6.3. Call Waiting Procedure6.3. Call Waiting Procedure6.3. Call Waiting Procedure
The Call Waiting Procedure is invoked when a third party
wishes to call a party that is currently in-session. Following the
steps similar to the Call Setup procedure, a receive-only
connection is established (7) (9) (11) between the third party and

the party in-session. Upon receipt of the Flash Hook notification
(13), the MGC places the current active connection into the
inactive mode with the Modify command (15).

Before MG2 switches lines, the MGC reads the statistics of
MG2 using the AuditValue command (17). The MGC then sends
to MG2 the Move command (19) to switch the connection to
MG3. Finally, the MGC requests MG3 to stop playing signals
and to set up the notification mechanism for an on-hook event
via the Modify command (21). The flow diagram for the Call
Waiting Procedure is shown in Figure 17.

(1)

(8)

(7)

(6)

(5)

(4)

(3)

(2)

Notify Request
(ObservedEvent = key/kd)

Add Reply
Response to 7

Specific LocalDescriptor

Add Request
(Context ID = 2,

Termination ID = at/hf,
Termination ID = tr,

Media LocalControl =
RecvOnly,

LocalDescriptor)

Notify Reply
Response to 5

Notify Request
(ObservedEvent = dd/ce

{IP of MG2})

Modify Reply
Response to 3

Modify Request
(Event = key/ku and dd/ce,

Signal = cg/dt)

Notify Reply
Response to 1

Modify Request
(Context ID = 1,
Signal = cg/rt)

(9)
Modify Reply

Response to 9
(10)

(22)

(21)

(20)

(19)

(16)

(15)

(14)

(13)

(12)

(11)

Modify Request
(Context ID = 2,

Termination ID = at/hf,
Signal = cg/rt,

Termination ID = tr,
Specific RemoteDescriptor)

Modify Reply
Response to 11

Notify Request
(ObservedEvent = key/kf)

Notify Reply
Response to 13Modify Request

(Context ID = 1,
Media LocalControl =

RecvOnly)
Modify Reply

Response to 15

Move Request
(Context ID = 2,

Termination ID = at/hf,
Signal = {},

Termination ID = tr,
Specific RemoteDescriptor)

Modify Reply
Response to 19

Modify Request
(Context ID = 2,

Event = key/ku and key/kf,
Terminaion ID = at/hf,

Signal = {},
Terminaion ID = tr,

Media LocalControl =
SdRecv)

Modify Reply
Response to 21

AuditValue Request
(Context ID = 1,

Audit = Event and Statistic)

AuditValue Reply
Response to 17

Specific Event and Statistic

(17)

(18)

MGC MG2 MG3MG1

Figure 17: Call Waiting Sequence Diagram.

 7777

6.4. Call Release Procedure6.4. Call Release Procedure6.4. Call Release Procedure6.4. Call Release Procedure
When a user hangs up, a Notify command (1) is sent to the MGC.
The MGC then issues the Subtract command (3) (7) (11), which
tears down the connection with each MG. In preparation for the next
call, the MGC sends to each MG a Modify command (5) (9) (13) for
the detection of an off-hook event. The flow diagram for the Call
Release Procedure is shown in Figure 18.

Notify Request
(ObservedEvent = key/ku)

Notify Reply
Response to 1

(1)

(12)

(11)

(10)

(9)

(8)

(7)

(6)

(5)

(4)

(3)

(2)
Subtract Request
(Context ID = 2,

Termination ID = at/hf,
Termination ID = tr)

Subtract Reply
Response to 3

Modify Request
(Event = key/kd)

Modify Reply
Response to 5 Subtract Request

(Context ID = 2,
Termination ID = at/hf,

Termination ID = tr)

Subtract Reply
Response to 7

Modify Request
(Event = key/kd)

Modify Reply
Response to 9Subtract Request

(Context ID = 1,
Termination ID = at/hf,

Termination ID = tr)

Subtract Reply
Response to 11

Modify Request
(Event = key/kd)

Modify Reply
Response to 13

(14)

(13)

MG1 MGC MG2 MG3

Figure 18: Call Release Sequence Diagram.

7. Simulation Results7. Simulation Results7. Simulation Results7. Simulation Results
The MEGACO/H.248 OPNET implementation was verified by
employing a simple call-waiting scenario, a complex call-
waiting scenario, as well as a multi-call and multi-connection
scenario. Section 7.1, 7.2 and 7.3 discuss each scenario.

Due to the large volume of the simulation result, only subset of
result in the simple call-waiting scenario is shown.

7.1. Simple Call7.1. Simple Call7.1. Simple Call7.1. Simple Call----Waiting ScenarioWaiting ScenarioWaiting ScenarioWaiting Scenario
In the simple call-waiting scenario shown in Figure 19, three
MGs are connected to the MGC.

Figure 19: Simple Call-Waiting Topology.

In this simulation scenario, each command was used and the
results were verified. The action sequence is:

1. MG1, MG2, and MG3 register with MGC
2. MG1 connects to MG2
3. MG3 calls MG2
4. MG2 switches to MG3, while MG1 is on hold
5. MG3 hangs up, and MG2 switches to MG1
6. MG2 hangs up.

In action sequence 1, the interaction between the MGC and the
MGs is:

|---|
[1] MGC received the following message:
MEGACO/1 [172.16.0.2]:5555
Transaction = 1000 {
Context = - {
ServiceChange = ROOT {
Service {
Method=Restart,
ServiceChangeAddress=5555,
Profile=IPPhone/1
}}}}

[2] MGC just sent MG (IP: 172.16.0.2)
the following message:

MEGACO/1 [172.16.0.1]:2944
Reply = 1000 {
Context = - {
ServiceChange = ROOT {
Services {
ServiceChangeAddress=5555,
Profile=IPPhone/1
}}}}

[3] MGC received the following message:

MEGACO/1 [172.16.0.3]:5555
Transaction = 2000 {
Context = - {
ServiceChange = ROOT {
Service {
Method=Restart,
ServiceChangeAddress=5555,
Profile=IPPhone/1
}}}}

[4] MGC just sent MG (IP: 172.16.0.3)
the following message:

MEGACO/1 [172.16.0.1]:2944
Reply = 2000 {
Context = - {
ServiceChange = ROOT {
Services {
ServiceChangeAddress=5555,
Profile=IPPhone/1
}}}}

 8888

|---|
| [5] MGC just sent MG (IP: 172.16.0.2)
the following message:
MEGACO/1 [172.16.0.1]:2944
Transaction = 1 {
Context = - {
AuditCapabilities = ui {
Audit{Events, Signals}
}}}

[6] MGC received the following message:

MEGACO/1 [172.16.0.4]:5555
Transaction = 3000 {
Context = - {
ServiceChange = ROOT {
Service {
Method=Restart,
ServiceChangeAddress=5555,
Profile=IPPhone/1
}}}}

[7] MGC just sent MG (IP: 172.16.0.4)
the following message:

MEGACO/1 [172.16.0.1]:2944
Reply = 3000 {
Context = - {
ServiceChange = ROOT {
Services {
ServiceChangeAddress=5555,
Profile=IPPhone/1
}}}}

[8] MGC received the following message:

MEGACO/1 [172.16.0.2]:5555
Reply = 1 {
Context = - {
AuditCapabilities = ui {
Event {key/kd,key/ku,key/kf,dd/ce},
Signal {cg/dt,cg/rt}
}}}

[9] MGC just sent MG (IP: 172.16.0.2)
the following message:

MEGACO/1 [172.16.0.1]:2944
Transaction = 2 {
Context = - {
Modify = ui {
Events = 1 {key/kd}
}}}

[10] MGC received the following message:

MEGACO/1 [172.16.0.2]:5555
Reply = 2 {
Context = - {
Modify = ui
}}

|---|
| [11] MGC just sent MG (IP: 172.16.0.3)
the following message:
MEGACO/1 [172.16.0.1]:2944
Transaction = 3 {
Context = - {
AuditCapabilities = ui {
Audit{Events, Signals}
}}}

[12] MGC received the following message:

MEGACO/1 [172.16.0.3]:5555
Reply = 3 {
Context = - {
AuditCapabilities = ui {
Event {key/kd,key/ku,key/kf,dd/ce},
Signal {cg/dt,cg/rt}
}}}

[13] MGC just sent MG (IP: 172.16.0.3)
the following message:

MEGACO/1 [172.16.0.1]:2944
Transaction = 4 {
Context = - {
Modify = ui {
Events = 2 {key/kd}
}}}

[14] MGC received the following message:

MEGACO/1 [172.16.0.3]:5555
Reply = 4 {
Context = - {
Modify = ui
}}

[15] MGC just sent MG (IP: 172.16.0.4)
the following message:

MEGACO/1 [172.16.0.1]:2944
Transaction = 5 {
Context = - {
AuditCapabilities = ui {
Audit{Events, Signals}
}}}

[16] MGC received the following message:

MEGACO/1 [172.16.0.4]:5555
Reply = 5 {
Context = - {
AuditCapabilities = ui {
Event {key/kd,key/ku,key/kf,dd/ce},
Signal {cg/dt,cg/rt}
}}}

 9999

|---|
| [17] MGC just sent MG (IP: 172.16.0.4)
the following message:
MEGACO/1 [172.16.0.1]:2944
Transaction = 6 {
Context = - {
Modify = ui {
Events = 3 {key/kd}
}}}

[18] MGC received the following message:

MEGACO/1 [172.16.0.4]:5555
Reply = 6 {
Context = - {
Modify = ui
}}

7.2. Complex Call7.2. Complex Call7.2. Complex Call7.2. Complex Call----Waiting ScenarioWaiting ScenarioWaiting ScenarioWaiting Scenario
In the complex call-waiting scenario, four MGs are connected to
the MGC. The network topology of this simulation scenario is
shown in Figure 20. The action sequence is:

1. All MGs register with MGC
2. MG2 connects to MG3
3. MG1 calls MG2, and MG4 calls MG3
4. MG2 switches to MG1, while MG3 switches to MG4
5. MG2 and MG3 switches back, while MG1 and MG4 are put

on hold
6. MG3 hangs up
7. MG4 gets removed from the inactive connection
8. MG2 switches back to MG1
9. MG2 hangs up.

Figure 20: Complex Call-Waiting Topology.

7.3. Multi7.3. Multi7.3. Multi7.3. Multi----Call and MultiCall and MultiCall and MultiCall and Multi----Connection ScenarioConnection ScenarioConnection ScenarioConnection Scenario
This simulation scenario is used to verify the OPNET
implementation in a multi-call and multi-connection
environment. Five MGs are connected to the MGC. The network
topology is shown in Figure 21. The action sequence is:

1. All MGs register with MGC
2. MG1 connects to MG2, while MG4 connects to MG5
3. MG3 calls MG2
4. MG2 switches to MG3, while MG1 is put on hold
5. MG3 hangs up, and MG2 switches back to MG1
6. MG2 and MG4 hang up.

Figure 21: Multi-Call and Multi-Connection Topology.

8. Conclusion and Future Work8. Conclusion and Future Work8. Conclusion and Future Work8. Conclusion and Future Work
In this paper, we describe the OPNET implementation of the
MEGACO/H.248 signaling protocol between the MGC and MG.
We provide an overview of the MEGACO/H.248 signaling
components and the commands. The OPNET implementation of
the MEGACO/H.248 protocol supports an unlimited number of
MG interconnections. We successfully implemented all
MEGACO/H.248 commands. Several call scenarios between the
MGC and MGs were simulated, which validated our
implementation. Future development of this project would be
implementation of the MEGACO/H.248 protocol over the IP
network.

9. References9. References9. References9. References
[1] S. Wu, M. Riyadh, and R. Mannan, and Lj. Trajković,

“OPNET implementation of the Megaco/H.248 protocol,”
OPNETWORK 2002, Washington, DC, Aug. 2002.

[2] T. Taylor, “Megaco/H.248: a new standard for media
gateway control,” IEEE Communications Magazine, pp.
124-132, October 2000.

[3] “Media Gateway Control (Megaco),” Alcatel Executive
Briefing, Alcatel Internetworking, December 2001.

[4] N. Greene, M. Ramalho, and B. Rosen, “Media Gateway
Control Protocol architecture and requirements,” RFC 2805,
April 1999: http://www.ietf.org/rfc/rfc2805.txt (accessed in
February 2003).

[5] F. Cuervo, N. Greene, A. Rayhan, C. Huitema, B. Rosen,
and J. Segers, “Megaco protocol version 1.0,” RFC 3015,
November 2000: http://www.ietf.org/rfc/rfc3015.txt
(accessed in February 2003).

[6] P. Blatherwick, R. Bell, and P. Holland, “Megaco IP phone
media gateway application profile,” RFC 3054, January
2001: http://www.ietf.org/rfc/rfc3054.txt (accessed in
February 2003).

[7] M. Brahmanapally, P. Viswanadham, and K. Gundamaraj,
“Megaco/H.248 call flow examples,” October 2002:
http://www.ietf.org/internet-drafts/draft-ietf-megaco-
callflows-01.txt (accessed in February 2003).

[8] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson,
“RTP: a transport protocol for real-time applications,” RFC
1889, January 1996: http://www.ietf.org/rfc/rfc1889.txt
(accessed in August 2002).

