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ABSTRACT 

The extraction of 3D building geometric information from high-resolution electro-optical imagery is becoming a key 

element in numerous geospatial applications. Indeed, producing 3D urban models is a requirement for a variety of 

applications such as spatial analysis of urban design, military simulation, and site monitoring of a particular geographic 

location. However, almost all operational approaches developed over the years for 3D building reconstruction are semi-

automated ones, where a skilled human operator is involved in the 3D geometry modeling of building instances, which 

results in a time-consuming process. Furthermore, such approaches usually require stereo image pairs, image sequences, 

or laser scanning of a specific geographic location to extract the 3D models from the imagery. Finally, with current 

techniques, the 3D geometric modeling phase may be characterized by the extraction of 3D building models with a low 

accuracy level. This paper describes the Automatic Building Detection (ABD) system and embedded algorithms 

currently under development. The ABD system provides a framework for the automatic detection of buildings and the 

recovery of 3D geometric models from single monocular electro-optic imagery. The system is designed in order to cope 

with multi-sensor imaging of arbitrary viewpoint variations, clutter, and occlusion. Preliminary results on monocular 

airborne and spaceborne images are provided. Accuracy assessment of detected buildings and extracted 3D building 

models from single airborne and spaceborne monocular imagery of real scenes are also addressed. Embedded algorithms 

are evaluated for their robustness to deal with relatively dense and complicated urban environments.   
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1 INTRODUCTION 

The extraction of 3D building geometric structures from high-resolution electro-optical imagery is nowadays one of the 

most complex and challenging tasks faced by the photogrammetry community, considering the scene complexity 

involved, crowded with objects of dissimilar natures, and cumulated with the diversity of scenario. It has been an active 

research topic, since producing 3D urban models is a requirement for varieties of applications such as urban planning, 

military simulation, creation of geographic information systems databases, and creation of urban city models. 

Furthermore, the emergence of commercially available high-resolution imagery has increased the need for such 3D 

geometric modeling capabilities, for application like topographic mapping
1
. Site modeling of dense urban areas can now 

be accomplished with the use of commercial spaceborne electro-optical sensors that provide imagery with spatial 

resolution below the half-meter level. However, while the reconstruction of 3D building models is a key element to 

generate the 3D geometric description of a scene, the extraction of 3D building models is traditionally achieved 

manually, which may result in extraction results with low accuracy level. Such manually based editing is time 

consuming, expensive, and requires well-trained operators. Moreover, actual techniques use digital terrain models, laser 

scanning, calibrated stereo pairs, or image sequences to help the operator in the extraction of the 3D building geometric 

shape
2
. However, in some practical cases, only a single electro-optic image of a given geographic location might be 

available
3
. Numerous techniques have been proposed in the past few years to automate the 3D building extraction 

process. Nevertheless, almost all 3D building reconstruction approaches are semi-automated ones
4
, limited to specific 

applications and restricted scenarios. Still, there is a growing interest in the development of automatic building 

extraction systems, aimed at the detection of 3D building models, with improved accuracy level, and able to ingest single 

monocular imagery acquired over complex urban scenes. 
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2 EXTRACTION OF BUILDING STRUCTURES 

The extraction of 3D building structures from remote sensing imagery is complex, mainly because it usually results in 

ambiguous solutions
5
. Indeed, the first difficulty experienced in developing automated building extraction techniques is 

the range of image variations in terms of type, scale, spectral range, sensor geometry, image quality, imaging conditions 

(e.g. lighting, weather), and the required level of detail. Using single monocular imagery increases substantially the level 

of difficulty to be considered, as buildings can be rather complex structures with many architectural details and a 

diversity of roof structures. A second difficulty arises with the automatic recognition of the semantic information 

embedded in the imagery, where the objects to be extracted in image-space can be located very close to each other. As a 

result, the buildings may be surrounded by numerous man-made and natural objects. This includes the occlusion of 

building parts and the geometrical resolution that may be limited. Suitable building extraction techniques must cope with 

the interpretation of such complex imagery, in order to recognize the location and extent of the buildings within these 

many image features. In spite of all these difficulties, some automated building extraction systems have been developed 

over the years, with limited performance in terms of robustness and accuracy.  

 

2.1 Previous automatic building extraction systems 

Previously developed automatic building extraction systems usually consider two main tasks within the building 

extraction process
2
: building detection and building reconstruction. These two tasks are mandatory, whether the 

extraction process is based on a specific model or if a priori information is used. For instance, building outlines and roof 

structures may be described with the use of lines and regions
6
, planar patches

7
, polyhedral shapes

8
, geometrical 

representation with rectangular models
9
, or using multiple images

10,11
. These proposed techniques are grouped as 

structural approach
12
, parametric models

9
, or perceptual organization

13
. While numerous semi-automated systems have 

been developed, a limited number of fully automated systems are found in the literature. Sohn and Dowman (2001) 

suggested an automatic building extraction technique using local Fourier analysis to analyze the dominant orientation 

angle in a building cluster in dense urban areas of IKONOS imagery
14
. Nonetheless, they assumed isolated buildings 

aligned parallel to a street without assessment of the accuracy of the modeling process. Fraser et al (2002) analyzed the 

potential of using high-resolution imagery for extracting building instances, by comparing extracted buildings from 

IKONOS imagery with the one extracted using airborne black and white images
15
. Using optimization and destruction 

approaches simultaneously, Otner (2002) introduced a point process technique to extract well-structured and 

symmetrical buildings
16
. Haverkamp (2003) used linking edges to extract buildings from IKONOS images

17
.  Thomas et 

al (2003) evaluated three classification methods for the extraction of land cover information from high-resolution 

images
18
. Lee et al (2003) approximate the position and shape for candidate building objects in multispectral IKONOS 

imagery
19
. Shackelford and Davis (2003) used a pixel-based hierarchical classification to develop a preliminary estimate 

of potential buildings
20
. Benediktsson et al (2003) used mathematical morphological operations to extract structural 

information from the image
21
. Kim and Nevatia (2004) presented an approach for detecting and describing complex 

buildings, using expendable Bayesian networks to combine evidence from multiple images and digital elevation 

models
11
.   

3 METHODOLOGY 

The Automatic Building Detection (ABD) system aims at the automatic detection of buildings and the 3D reconstruction 

of their geometric structures from single monoscopic airborne or spaceborne panchromatic image view of a scene. 

Accordingly, the starting point of the process is strongly dependent of the type of input image data, scene complexity, 

sensor view angle, and on the state of preparedness of the input image as it is presented to the processing engine. 

Furthermore, insufficient ground sampling data and matching errors caused by poor image quality, occlusion, and 

shadows might lead to poor definition of buildings outlines. 

In the development of the algorithms, the following assumptions are made: 

1. In order to restrict the scope of the fundamental detection and 3D reconstruction problems, only 

panchromatic imagery are considered. 

2. Both airborne and spaceborne imagery have full acquisition platform metadata supplied. 

3. As no Digital Elevation Model (DEM) is provided, the surrounding terrain is assumed to be flat. 



 

 
 

 

4. The building footprint is either rectangular or can be formed by simple composition of rectangles. 

5. Within each rectangular building component, the walls of the buildings are vertical and have the same 

height. 

6. The building roof types considered are flat(gable roofs are assumed to be flat at this time). 

7. In order to have shadows as supporting evidence of 3D structures, the imagery is acquired on a clear day, 

with the sun neither at nadir nor at the horizon. 

Under these assumptions, the proposed methodology is segmented into five major modules (Figure 1): 1) Acquisition 

geometry, 2) 2D image primitives, 3) Rooftop hypotheses generation, 4) Building hypotheses generation, and 5) 3D 

scene visualization. Each module is summarized in the following subsections. 

 

. Rooftop hypotheses candidates are generated by combining lines

.  Candidates are ranked and filtered according to :

                        1- Image intensity characteristics inside,

                        2- Shadow evidence outside,

                        3- Intensity variation right at the edge lines.

. Remove highly overlapping rooftop candidates

Rooftop Hypotheses Generation

.  Refine the location and slope of  rooftop edges

.  Use ground/wall/acquisition geometry to predict the image shadow areas

.  Find the height that maximize  ground shadow evidence for each roof

.  Rank hypotheses according to their strength

.  Resolve overlapping/duplicating hypotheses corresponding to same buildings

Building Hypotheses Generation

.  Overlay wireframe model on original image

.  output building descriptions

Visualization and Output

. Time, date, location

. Camera focal length

. CCD size

. Altitude, viewing angle

External Metadata

. Grey scale image

Input

. Extract edges, lines, junctions and parallel pairs

  . Segment image to shadow and no-shadow areas

2-D Image Primitives

. Identify scale

. Sun and camera geometry

Acquisition Geometry

 

Figure 1. 3D building extraction process  

3.1 Acquisition geometry 

The acquisition geometry of diverse sensors and platforms is translated into data structures that are independent of the 

sensor and platform, and are well suited to efficient calculations during the image analysis.  These data structures are 

vector fields that are essentially the jacobian of the ground to image and ground to shadow transformations.  These 

transformations are slowly varying, so a sparse sampling is sufficiently accurate, and is more efficient at run-time than 

rational functions. The acquisition geometry is used to calculate the sun and sensor geometry, and identify the image 

scale. External metadata, such as acquisition time and sensor focal length, are provided to the module. 



 

 
 

 

3.2  2D image primitives 

Within this module, image primitives are extracted and processed from monocular panchromatic imagery. These 

primitives and processes, as listed below, are used in generating the initial set of building rooftop candidates:  

• The gradient field of the image, including both gradient magnitude and direction. 

• A set of straight-line segments (location, extent, orientation) found in the image. 

• A linking process that links straight collinear line segments. 

• A filtering process that removes lines that won’t likely contribute to rooftop hypothesis generation. 

• A segmentation of the image into shadow, and non-shadow regions. The non-shadow regions are also 

segmented into four distinctive regions according to their intensity values. 

The following subsections describe the extraction of various image primitives.  
   

3.2.1 Gradient field 

The objective of this process is to generate the gradient field of the image that gives the gradient magnitude and direction 

for each image pixel. For this purpose, first a Gaussian lowpass filter is applied over the image to reduce pixel-level 

noise. Then the horizontal and vertical gradient at each pixel is computed by convolving vertical and horizontal gradient 

masks across the image. The gradient magnitude and direction are then computed from the horizontal and vertical 

gradients at each pixel point
22
. 

  

3.2.2 Straight-line segments extraction 

In this process, both gradient magnitude and gradient orientation of edge pixels are utilized to form line support regions 

and eventually straight-line segments
22
. The process is briefly summarized below: 

1. Partition the pixels into bins based on the gradient orientation values: a bin size of 45 degrees was selected. 

2. Run a connected-components algorithm to form line support regions from groups of 4-connected pixels that 

share the same gradient orientation bin. 

3. Eliminate line support regions that have an area smaller than a specified threshold. 

4. Repeat steps 1, 2, and 3 by shifting the gradient bins to produce a second set of line support regions. This 

accounts for the possibility that some “true” lines may have component pixels that lie on either side of an 

arbitrary gradient orientation boundary.  

5. Use a voting scheme to select preferred lines from the two sets (i.e. original set and shifted set) of candidate 

lines.  

6. For each line support region, compute the line represented by that region by performing least squares fit. 
  

3.2.3 Linking process 

The objective of this step is to link collinear line segments that are separated by very small gaps. The algorithm 

implemented in this step is as follows: 

1. Sort the lines in the order they would be encountered if a horizontal sweep was performed across the image. 

This amounts to sorting lines by the leftmost endpoint coordinate. 

2. Use a divide-and-conquer method to efficiently determine nearby pairs of lines. 

3. Test each pair of nearby lines to determine whether they should be linked. All of the following criteria must be 

satisfied for a pair of lines to be linked: 

a. At least one of the lines must be longer than a supplied threshold value. 

b. The lateral distance between the two lines must be lower than a threshold. 



 

 
 

 

c. The distance between the nearest endpoints of the two lines must be below a supplied threshold. 

d. The slopes of the lines must be within an interval. 

e.  The degree of overlap (or under-lap) must be less than a supplied threshold. 

4. For each set of 2 or more lines that should be linked, replace them with a single line that spans the region 

previously covered by that set of lines. This replacement line can be generated in one of two ways: 

a. Use the outside endpoints from the linked lines. 

b. Merge the pixels from the line support regions into a larger line support region, and perform a least 

squares fit to compute the best-fit line. This latter method is the one used. 

5. Repeat steps 1 to 4 iteratively, modifying the linking thresholds on successive passes. While the “best” iterative 

strategy is configurable, one example is as follows: 

a. Run the linking algorithm with relatively strict thresholds. The first pass will link up numerous shorter 

lines into longer ones. 

b. Repeat the linking algorithm, without altering the thresholds. This second pass may further extend 

lines which were linked up in the first pass by extending to “outliers”. 

c. Run the linking algorithm, but increase the length threshold while relaxing one or more of the other 

thresholds. This strategy aims to further extend the longer image lines (which tend to derive from 

building edges). 

 

  

(a) (b) 

Figure 2. Line linking and filtering processes outputs of aerial imagery. (a) Line segments are extracted and then linked, 

according to some distance, orientation, slope, and overlap criteria. (b) Extracted lines are then filtered. 



 

 
 

 

3.2.4 Line filtering 

The objective of the line filtering process is to eliminate lines that are not likely to positively contribute to rooftop 

hypothesis generation. The motivation for doing this is that the execution time increases rapidly as the number of 

extracted lines increases. In theory, reducing the size of this line set allows subsequent analysis to be performed more 

rapidly without significantly impacting overall performance. Two filters are applied to the line set: 

1. The first filter acts on line length. In general, “long” lines are more likely to contribute to hypothesis formation 

and subsequent steps. Thus, a filter was applied that removes all “short” lines, defined by a configurable 

parameter.  

2. The second filter is slightly more complex. When the straight lines are produced from the line support regions, 

an average gradient across the line segment is calculated. Lines that separate regions of high contrast will have a 

large average gradient, while the ones that separate regions of low contrast will have a small average gradient. 

For each line, the average gradient is divided by the average intensity across the scene. This ratio is then 

compared to a configurable parameter. Lines with a ratio lower than this value are removed.  

Figure 2a displays the results of line extraction after the linking process is applied, and figure 2b illustrates the results of 

line extraction after the linking process is applied. 
  

3.2.5 Image segmentation 

The image segmentation is performed to first identify areas corresponding to the shadow regions. The areas that do not 

correspond to shadow regions are further segmented into four groups. These later results are used when uniformity of 

each roof hypotheses is examined. Figure 3a shows the flow chart of the segmentation method applied to the input 

images, which is a modified version from the version that originally was described previously
23
. Figure 3b displays the 

resultant image after the segmentation 

 

  

(a) (b) 

Figure 3.  Segmented images into shadow and non-shadow regions. (a) Flow chart of the segmentation method. (b) 

Resultant segmented image into five regions. 

 



 

 
 

 

3.3 Rooftop hypotheses generation 

The objective of this module is to generate a set of rooftop hypotheses, based on the previously extracted straight-line 

segments. The initial set of roof hypothesis is extracted using straight lines set, then refined and assessed, based on their 

image intensity values. To achieve such roof hypotheses extraction, some algorithms have been developed for roof 

hypotheses generation and hypotheses refinement. 
  

3.3.1 Roof hypotheses generation 

 The algorithm implemented to achieve this is as follows: 

1. Generate a list of anti-parallel pairs of line segments. When the line segments are extracted, they are associated 

with a certain direction based on the gradient direction of the pixels. Anti-parallel line segments have, by 

definition, gradient directions that differ by 180°. 

2. For each pair of lines (denoted as ‘West’ and ‘East’, following a convention established previously
22
), search 

for all approximately perpendicular line segments which could form ‘North’ and ‘South’ sides to the building 

hypothesis. 

3. Generate a rooftop hypothesis from each combination of West, East, North, and South line segments found. 

4. For each hypothesis, determine all line segments that lie in the vicinity of the hypothesis. Use these line 

segments in the computation of a series of positive and negative hypothesis measures. Assign weights to each 

measure, and compute a score (weighted sum of the measures) for each hypothesis. These weights represent the 

likelihood that each rooftop hypothesis corresponds to a real rooftop.  

Note that measures such as parallel, anti-parallel, and perpendicular must be determined in object-space. However, with 

almost nadir imagery, we assume that angular measures taken in image-space are approximately the same as those in 

object-space. Determination of the acquisition geometry of section 3.1 provides a method for converting between these 

two spaces.  
  

3.3.2 Roof hypotheses refinement 

The initial set of roof hypotheses is further refined, by removing the potentially large number of “duplicate” hypotheses. 

Two hypotheses are assumed to be “duplicates” if: 

1. The individual areas of the two hypotheses are comparably close.  

2. The two hypotheses overlap significantly. To determine this, the area of the intersection of the two hypotheses 

is calculated, and then divided by the area of the smaller of the two hypotheses. 

Choosing the true hypotheses among a set of possible duplicate is a very critical step and it would impact the accuracy of 

the ABD system to a large extend. For this purpose, the image content within each roof definition is incorporated in this 

process. The main assumption here is that true roofs seem to include more uniform image intensity distribution. 

Therefore, standard deviation of the intensity values bounded by each roof definition was computed next: 
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All roof hypotheses with good geometric definition that pass the following condition will be passed to the next stage of 

the inspection:  
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In order to identify the true rooftop definition, two more conditions are investigated: 

a. Transition from non-shadow to shadow for each roof edge. 

b. Evidence of shadow in the neighbourhood of roof definition. 



 

 
 

 

These two conditions are applied to a shadow image that is generated earlier in Section 3.2.5.  The first condition ranks 

each hypothesis according to the average number of pixels that change from non-shadow to shadow state when moving 

in the direction perpendicular to each roof edge ( HTrans ): 
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Here 1, −plS  and 1, +plS  represent points at the two sides of line l  (with length n ) of hypothesis H  in the shadow 

segmented image S . Therefore, from a set of highly overlapped hypotheses, only the hypothesis with the strongest 

contrast across all four edges is selected and the rest of group candidates are retired from further assessments.  

The second condition examines the evidence of shadow in the neighbourhood of each candidate hypothesis. For the true 

hypothesis, one expects to have shadow projections outside the two roof edges that in fact create such shadows. This 

condition removes false hypotheses that for instance are built upon lines that are generated at the intersection of shadow 

and ground. This condition is shown by: 

    0
2

1

4

3
,, >







−∑ ∑ ∑ ∑

∆+

∆−−=

∆+

∆−−= −= −=

l

li

w

wj

l

li

w

wj
jiji SS          (4) 

In this equation, the first term represents the shadow area over the hypotheses extended (along both shadow edges). The 

values of ∆1, ∆2, ∆3 and ∆4 are defined based of the vector field. Figure 4 shows a typical example where three 

neighboring building rooftops, with a large interrelationship, are identified accurately. 

 

 

Figure 4. Rooftops are identified for a scene with three buildings. 

 

3.4 Building hypotheses generation 

The objective of this module is to look for evidence of shadow, wall, and ground lines to provide three-dimensional 

support for each rooftop hypotheses. This allows a height prediction, and thus generates a 3D building hypothesis from 

the previously “flat” rooftop hypotheses. Correct height estimation requires accurate roof localization. For this reason, an 

extra step is taken here to refine the location and slope of rooftop definitions. 



 

 
 

 

  

3.4.1 Roof location and slope refinement 

Positional refinement of the roofline hypothesis requires analyzing image intensities around each candidate line/edge.  

By definition these areas, if identified correctly, must contain abrupt changes or discontinuities in the image properties 

such as intensity, color or texture. This discontinuity can be noticed when moving on the perpendicular direction at each 

edge point. However, this is under the assumption that an accurate edge definition (slope and position) exists. In this 

process, we first correct the slope of each rooftop line and then refine its location. With the assumption that the true edge 

locates in a close vicinity of the current definition, each edge is re-sampled (configurable in width and method) around 

its current definition first. Next, the re-sampled image is Gaussian filtered. The Laplacian operator is then applied to the 

resultant image region. By definition, the edge is located at the point where the Laplacian sign changes. A fit is then 

computed that minimized the edge location error along the line direction: this fit represent the corrected roof edge 

definition. After the slope of each roofline is corrected, it is re-sampled once again. A directional gradient (perpendicular 

to the edge direction) is then applied to the image region. Using the one-dimensional profile of the resulting gradient, the 

location of the edge is then computed, first by looking at the maximum location. It is then refined by sub-pixel 

interpolation using a 2
nd
 order polynomial fit through the following equation: 

    ( ) ( )( ) ( ) ( ) ( )( )( )112211 −−+−××−−+=∆ xyxyxyxyxyx       (5) 

The edge refinement may be chosen to apply on all four edges, or just simply to the edges that produce the shadow 

footprints. In our experiments, there was not noticeable changes (within a pixel) when refining edge locations using 

“linear” and “nearest” interpolation methods. This could be due to the fact that the one-dimensional profile was 

smoothened by the mean filter. Also, the sub-pixel interpolator of equation (5) still provides accuracy within a pixel, 

which seems to be sufficient for the examined cases. 

3.4.2 Height estimation 

Estimating height of buildings could be performed by matching the projected shadows of a set of candidate heights, 

against the extracted lines around each projection neighborhood. This approach performs robustly in the case of 

buildings with clear shadows and no occlusions. In cases where shadows are partial due to objects occluding the shadow 

lines or adjacent buildings, where the shadow lines are not clearly drawn, it could fail (as shown in Fig. 5a). 

  

(a) (b) 

Figure 5. Height estimation process. (a) Partial shadow lines result from occluding objects. (b) Projected shadows of a set of 

candidate heights are matched against the extracted building lines.  

For the above reasons, a complementary algorithm is implemented that takes advantage of the image intensity values 

around the shadow line. Generally moving to or from a shadow region produces a large intensity change. Therefore, for 

every possible height, projected shadow lines are estimated first. A building could have up to 4 shadow lines. The mean 

normalized intensity variation in the direction perpendicular to each shadow line is computed next. The pixel variation is 

weighted according to the length of each edge. Finally, scores for all edges are combined to compute an overall score: 

the height with the highest score is chosen as the height of the building.           



 

 
 

 

Since this method combines shadow evidences from all roof edges, it performs more robustly under occlusion. For 

instance, if parts of shadow lines are lost due to objects/adjacent building (as shown in Fig. 5b), there is still a high 

possibility that the remaining parts would sufficiently characterize the correct height of the building. 
  

3.4.3 Building hypotheses selection 

Separation of the true hypotheses from faulty ones is a key element in the reliability of the ABD system. For this reason, 

we combine the 3D score of each building with those of the roof definition to generate support ratio for each building 

hypotheses.  

The 3D score of the building hypotheses are estimated using the projection of all shadow lines on the image. The image 

is re-sampled at the location of these edges and the mean relative intensity variation for each individual edge is 

computed using:  

      [ ]1011,,1,, −⋅=∆ +− jijijiji IIII          (6) 
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This value is weighted according to the edge length. Values corresponding to all edges of each building rooftop are 

added together to generate a shadow edge intensity score:  
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The overall support ratio for each hypothesis is then computed using the following equation: 

    ( )2HSRSkHSRSScore +×−×=          (9) 

In this equation, RS  is the rooftop score and k is an empirical constant
24
, which is set to 0.04. 

  

3.4.4 Resolving overlapping hypotheses 

The objective of this step is to resolve any remaining inconsistencies in the building hypothesis set by handling pairs of 

hypotheses, which overlap significantly. Following sequence is performed for each pair of building hypotheses: 

a. Determine the overlap ratio between the two hypotheses. As before, this is taken as the area of the intersection 

between the two rooftops divided by the area of the smaller rooftop. 

b. Hypotheses are deemed to be “overlapping” if the overlap ratio exceeds a predefined threshold. Ideally, this 

ratio threshold should be set to zero since real 3D buildings should not overlap at all. However, to account for 

variations in the building extraction process, a small tolerance is allowed. 

c. Whenever two building hypotheses are deemed to overlap, the hypothesis with the lower overall building score 

is eliminated. 

4 EXPERIMENTAL RESULTS 

The ABD system was tested with a set of 12 aerial and satellite images: two experimental results from the data set are 

presented in this section. Figure 6a shows the results for a scene including 3 neighboring buildings, together with a 

summary of the building hypothesis scores, including the estimated heights for each building (Fig. 6b). The predicted 

rooftop lines are drawn in solid red, the predicted wall/ground lines (if applicable) are shown as dashed red lines, and the 



 

 
 

 

predicted shadow lines are shown as dashed blue lines. Figure 7 illustrates another experimental results: 16 building 

hypotheses generated from a dense suburban area.   

 

 

“True” 
Buildings? 

ID Hypothesis 
Score 

Height 

Yes 943 0.0090 5.5 

Yes 8190 0.0081 3.5 

Yes 8520 0.0333 3 
 

                                                                                   (a) (b) 

Figure 6. 3D building models extracted from an airborne image. (a) Extracted buildings are displayed with wireframes. (b) 

Hypothesis score and estimated building heights. 
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Figure 7. 3D building models extracted from a dense suburban area. 

5 CONCLUSIONS AND FUTURE WORK 

This paper described a system that actually is in development for the automatic building detection and extraction of 3D 

models from single monocular high-resolution electro-optical imagery. First, the ABD system automatically extracts 2D 

image primitives such as edges, lines, junctions, and parallel pairs, while providing a segmentation of the image in 

shadow and no-shadow areas. Rooftop hypothesis candidates are then generated by combining lines previously 

extracted, and then ranked and filtered according to a set of rules. Next, refinement of the location and slope of rooftop 

edges is executed. Building heights that maximize shadow evidences are estimated subsequently. Finally, building 

hypotheses are ranked, and 3D building models are generated. Currently developments are under progress to identify 

buildings on top of other ones. Re-weighting evidences based on building interactions (i.e. occlusion) are also in 

progress. Future work includes that if potential evidence is impossible because of occlusion, that aspect of the building's 

weights shall not be penalized so severely. Finally, shadow analysis could be recalculated based on the building 

interactions, providing an iterative approach to the analysis, proceeding until all the evidence is consistent with the 3D 

building model. 
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