School of Engineering Science Simon Fraser University
 ENSC-380, Summer 2007
 Final Exam
 August 17, 2007

Name:
Student No.:

- Aid allowed: Three double sided A4 formula sheets.
- There are 8 questions in this exam for a total of 50 marks.
- Please write your name on this paper and return with your exam booklet
- Time: 3 Hours

Potentially useful Formulas:

$$
\begin{aligned}
\operatorname{sinc}(t) & \stackrel{\mathcal{F}}{\longleftrightarrow} \operatorname{rect}(f) \\
\operatorname{comb}(t) & \stackrel{\mathcal{F}}{\longleftrightarrow} \operatorname{comb}(f) \\
\alpha^{n} u[n] & \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z}{z-\alpha} \\
n \alpha^{n} u[n] & \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z \alpha}{(z-\alpha)^{2}}
\end{aligned}
$$

Question 1	Score $/ 3$
2	$/ 3$
3	$/ 4$
4	$/ 4$
5	$/ 8$
6	$/ 10$
7	$/ 50$
8	
Total	

1. For the given pair of functions below, determine what transformation has been performed on $g(t)$ to result in $h(t)$:

2. Consider the convolution:

$$
g(t)=\operatorname{rect}(t) * \operatorname{comb}(2 t)
$$

Find and sketch $g(t)$. You can show your work analytically, graphically, or both.
3. The harmonic function for a CT and periodic signal with representation period of $2(\mathrm{~s})$ is given:

$$
X[k]=3 \delta[k-2]+\delta[k]+3 \delta[k+2]
$$

What is the time function associated with this function?
4. Use the bilateral definition of Laplace transform:

$$
X(s)=\int_{-\infty}^{\infty} x(t) e^{-s t} d t
$$

to find the bilateral Laplace transform and region of convergence (ROC) of

$$
x(t)=e^{-2|t|}
$$

5. Consider an ideal CT-low pass filter (LPF) with a bandwidth of $f_{m}=10(\mathrm{~Hz})$. The phase response of the filter is given as $\angle H(f)=-6 \pi f$ during the pass band of the filter.

- (a) Sketch the magnitude of the frequency response of this filter, $|H(f)|$.
- (b) Find the impulse response of this filter, $h(t)$.

6. The CTFT of a signal $x(t)$ with bandwidth $f_{m}=1.5(\mathrm{~Hz})$ is given below. The signal is sampled every $T_{s}=0.5(\mathrm{~s})$, resulting in the signal

$$
x_{\delta}(t)=\sum_{n} x\left(n T_{s}\right) \delta\left(t-n T_{s}\right)
$$

Find and sketch the magnitude of the CTFT of $x_{\delta}(t)$. Show the important frequency and magnitude values on your graph.

7. Using partial fraction expansion, find the closed form for the inverse z-transform of

$$
X(z)=\frac{z^{2}}{z^{2}-z+\frac{1}{4}}
$$

8. Consider the DT feedback system below, where

$$
H_{1}(z)=\frac{z}{z-1} \quad \text { and } \quad H_{2}(z)=\frac{z}{z-2}
$$

- (a) Find the transfer function $H(z)$ of the overall feedback system.
- (b) Is the system stable? why?

