3.4 Diversity Reception - Multiple Users
3.4.1 The Model

- At last we tackle mutual interference. In the cellular. context we interpret as intracell intefferers. Again, other cell intefferers either do not exist or are treated as white noise.

- Weill deal only with spatial fettering to remove MAI in this section. Classic. Other MUD methods later.
- Model:
- perfect diversity (zero correlation)
- flat channels
- all users have same pulse shape

Note diversity implies no directionality. Just as no "beamforming" in Section 3.3, there will be no nulls tied to azimuthal directions here.

- To focus on spatial filtering, give the signal as little temporal structure as possible:
- all same pulse shape (spreading sequence)
- synchronous users
- flat channel
- Our standard model

$$
r=S \subseteq A \underline{b}+n
$$

is shown in Appendix I to reduce after correlationto

$$
\underset{y}{y}(n)=C(n) A \underline{b}(n)+\underline{v}(n)
$$

or

and $R_{v}=N_{0} I_{K}$
Well assume perfect CSI here, so must tracie $C(n)$. signals are coupled to all outputs through

$$
y=\underline{c}_{1} A_{1} b_{1}+\underline{c}_{2} A_{2} b_{2}+\cdots+\underline{c}_{k} A_{k} b_{k}+\underline{v}
$$

- We can decouple the signals with a linear transformation.

3.4.2 Zero Forcing Approach
- Zeroforcing is one way. Eliminate all interference in \hat{b}_{k}, regardless of effect on SNR.
$\hat{b}_{k}=\underline{w}_{k}^{+} \neq$is to be unaffected by $b_{i}, i \neq k$
- Choose \underline{w}_{k} to be orthogonal to the $k-1$ gain vectors $s_{i}, i \neq k$, of other users. If there were no other users, we would align \underline{w} with c_{k} to maximize SNR - but each orthogonality condition costs a degree of freedom in choosing w. Consegnantly,
\Rightarrow lose a degree of diversity for each other user: net diversity order $=M-(k-1)$.
\Rightarrow can support only $K \leqslant M$ users, since we can't find a non-zero \underline{w} that is orthogonal. to Moor more vectors.
- Appendix J shows that the resulting BER
in zeroforcing is exactly that of max ratio combining with $M-(k-1)$ antennas

nulling
… reference: no $\mathrm{CCI}, \mathrm{M}=1$
....... . reference: no $\mathrm{CCI}, \mathrm{M}=2$
$K=2, M=2$, null steered, equipower users
These results are for $\Lambda=0 \mathrm{~dB}$! Equipower users.

The performance is identical to that of a single user with only one antenna (see reference curve) because zero forcing costs an order of diversity to null the other user.

Each interferer is invisible to the other.

- Despite the loss of diversity, ZF has some virtues: - It is completely insensitive to power dispacitios, Since each user has nulled out the others. No near-for problem.
- You don't need to know the SNR to use ZF. (although you do need the vectors of complex gains).
- You dont even need the siginal structure here, because it's entirely spotial (butforther improvement if we do use sigñal structere, as well(see).
- So what are the weight vectors in ZF? Rather than complicated analysis, use basic principles again.

$$
y=C \underline{A} \underline{b}+\underline{v}
$$

The signal space is spanned by the cots of C and the noise is spatially white. Project onto the column basis and we have lost nothing of value in estimaterig b.

The projection is accomplished by

$$
\underline{\underline{y}}=C^{+} \neq=\underbrace{c^{+} c}_{k \times k} \underbrace{A \underline{b}}_{k \times 1}+C^{+} \underline{v}
$$

- To decouple, simply premuettiply by the inverse

$$
\begin{aligned}
\left(c^{+} c\right)^{-1} \underline{\zeta} & =\left(c^{+} c\right)^{-1} c^{+} y \\
& =A \underline{b}+\left(c^{+} c\right)^{-1} c^{+} \underline{v}
\end{aligned}
$$

or

$$
\begin{aligned}
& =A \underline{b}+ \\
C^{*} y & =A \underline{b}+C^{\#} \underline{v} \quad \text { the pseudo inverse }
\end{aligned}
$$

- The weight vectors are the cols of $W=C^{\#+}$. check: They are orthogonal to the unwanted columns of C because

$$
W^{\top} C=C^{*} C=I_{k}
$$

- Note that use of pseudo inverse means we have also solved the least squares problem

$$
\underline{y}=C A \underline{b}+\underline{v}
$$

for $A \underline{b}$. That is, given C and y, we have found the $A b$ that gives the best match in the output space f in the sense

$$
y-C A \underline{b}=\underline{\nu}, \operatorname{mininine} \sum_{m=1}^{M}\left|\nu_{m}\right|^{2}
$$

a deterministic anterion.

- In operation,

- Spatial filtering separates the signals and delivers to a set of K singl-userdetectors
- No use of finite alphabet or signature sequence - the signids could equally well have been analog
- Don't need SNR to separate them, but do need it for decision if multiampcitude constellation.
- The probability of error is easily calculated. We have

$$
C^{*} y=A \underline{b}+\underline{\alpha} \quad \underline{\alpha}=C^{\#} \underline{\sim}
$$

where the noise has con matrix

$$
C_{\alpha}=C^{\#} R_{\nu} C^{++}=N_{0}\left(c^{+} c\right)^{-1} c^{+} c\left(c^{+} c\right)^{-1}=N_{0}\left(c^{+} c\right)^{-1}
$$

For user k, the $B E R$ is then

$$
P_{e k}=Q\left(\frac{A_{k}}{\sigma_{\alpha k}}\right)=Q\left(\sqrt{\frac{2 E_{b k}}{N_{0}\left(c^{+} C\right)_{k, k}^{-1}}}\right)=Q\left(\sqrt{\frac{2 \Gamma_{b k}}{\left(C^{+} C\right)_{k, k}^{-1}}}\right)
$$

Note noise enhancement - if any \subseteq_{i} is close to being linearly dependent, on other gain vectors, then $C^{+} C$ is close to singular, and many. components of $\left(c^{+} c\right)^{-1}$ are large, causing loss of effective SNR in the Q function
3.4.2 User Separation by MMSE

- Nulling the interferes is satisfying - but not smart
- the desired signal gain may be weak after nulling the others; equivakntty, bringing its gain up to 1 also increases the noise.
- doesn't depend on C/I - if interferes are no stronger than the noise, why insist on mulling them?
- A compromise solution:
- Allow some increase in CCI in exchange for a big decrease in noise variance
- Minimise the sum of interference and noise powers at the detection point. MMSE.

$$
\begin{aligned}
& \hat{b}_{k}=\underline{w}_{k}^{+} y=\underline{w}_{k}^{+}(C A \underline{b}+\underline{v}) \\
& e_{k}=\hat{b}_{k}-b_{k}
\end{aligned}
$$

Collectively, $e=\underline{b}-\underline{b}$. Treat it as statistical, with two ensembles, \underline{b} and \underline{v} (solution is conditioned on \subseteq

- Criterion is applied to the input space, unlike the LS solution in $2 F$.
$J=E_{\underline{b}, \underline{t}}\left[|\underline{l}|^{2}\right]$ minimum sum of estimation error variances.
where $\underline{e}=\underline{\hat{b}}-\underline{b}, \quad \underline{b}=W^{\dagger} \neq \quad W=\left[\underline{w}_{1}|\cdots| \underline{w}_{k}\right]$
- Solution
- Choose W to minimise I. It's a sum of variances, and w_{k} does not affect $\hat{b}_{i}, i \neq k$, so we have separate minimisateris.
- We have $e_{k}=\underline{w}_{k}^{+}(C A \underline{b}+v)-b_{k}$

$$
\begin{aligned}
& J_{k}=E\left[\left|e_{k}\right|^{2}\right]=E\left[e_{k} e_{k}^{+}\right] \\
& \left.=E\left[\left(\underline{w}^{\dagger}(C A \underline{b}+\underline{v})-b_{k}\right)\left(\underline{b}^{+} A^{+} C^{+}+\nu^{+}\right) \underline{w}_{k}-b_{k}^{+}\right)\right] \\
& =\underline{w}_{k}^{\dagger}\left(C A^{2} C^{+}+N_{0} I_{M}\right) \underline{w}_{k}-\underline{w}_{k}^{+} A_{k} \underline{C}_{k}-A_{k} \underline{C}_{k}^{+} \underline{w}_{k}+1 \\
& \nabla_{\underline{w}} J_{k}=\left(C A^{2} C^{+}+N_{0} I_{m}\right) \underline{w}_{k}-A_{k} \underline{C}_{k}=O_{M}
\end{aligned}
$$

so userk weight is

$$
\underline{w}_{k}=\left(C A^{2} C^{t}+N_{0} I_{M}\right)^{-1} A_{k} C_{k}
$$

- Collectively)

$$
W=\left(C A^{2} C^{t}+N_{0} I_{M}\right)^{-1} C A
$$

Solution depends on $C(n)$. Tracking?

- Solution special cases
- Allusers but one have $A_{k}=0$ (ie., single user)

Then solution degenerates to MRC

$$
\underline{w}_{1}=\frac{\left(A_{1}^{2} s_{1} c_{1}^{+}+N_{0}\right)^{-1} A_{1}}{\text { a scale factor }} \underline{S}_{1}
$$

- Noise is zero. Then 't's the zeroforcing solution with pseudo inverse (easy to see if $K=M$; if $K<M$ use Moore. Pentose generalised pseudo (in).
- Observations
- Need the noise level (is. SNRs) to calculate it.
- Good near far resistance (weak user $\rightarrow Z F$)
- Users de facto $K \leqslant M$, as with $2 F$, and lose degree of diversity with each interferer (shows up asymptotically)
- BER is data pattern de pendent:

$$
\begin{aligned}
& E R \text { is data } p \text { paterndep } W^{+} y=\underbrace{A C^{+}\left(C A^{2} C+N_{0} I_{\mu}\right)^{-1} C A}_{\text {not diagonal }} \underline{b}+W^{+} \underline{v}
\end{aligned}
$$

but for a given C, b, it's just the Q function

And here are some results from the interactive demo:

$\mathrm{K}=2, \mathrm{M}=2, \mathrm{MMSE}$, Stronger User

Notes:

* operates like max ratio when CCl is much less than noise, hence roughly dual diversity
* when CCl dominates noise, operates more like null steering, hence roughly single diversity (no diversity), as seen in the slope but there's a still a SNR benefit compared to pure nulling
* when users are equipower, then MMSE is a little better than zero forcing (the reference curve) in the SNR range shown.

Notes:

* All of the MMSE curves for the weaker user lie on top of the single antenna ($\mathrm{M}=1$) reference curve. This shows that the solution is always very close to the zero forcing (nulling) solution, and it lost an order of diversity.
$\cdots-\cdots$..... reference: no $\mathrm{CCI}, \mathrm{M}=1$
\cdots C/I Lambda $=0 \mathrm{~dB}$ (equipower)
….. C / I Lambda $=10 \mathrm{~dB}$
$\cdots . C /$ Lambda $=20 \mathrm{~dB}$
…...... $\mathrm{C} /$ Lambda $=30 \mathrm{~dB}$
… reference: no CCL, M=2
$K=2, M=2, M M S E$, Weaker User
- Like 2F, MMSE separates to a bank of single -user detectors.

- Read [Wint 84] spacifitter, flat fading, CCI
[Clar92] space fitter, selective fading $p, ~ \subset C I$
- Summary for K mobiles, M antennas

- need large CII for satisfactory. operation; aptrivm if single veer, white noise.
- the dominant mobile has diversity M
- performance of the otters is useless
- performance is indep of C / I, so no near-for effect, other mobiles invisible
- equivalent to single user performance with MRC of diversity M-(k-1)
- minimise sum of all. distortions, CCI, noise leven ISI)
- when CCI << noise then behaves like max ratio, diversity M
- when cess \gg noise then like zero forcing, diversity M-(K-1) but with SNR improvement
- robust in face of near-for

