6.B SSMULATION OF MUD WITHOUT SIGNATURES

1. INTRODUCTION

The smulation in this worksheet compares the performance of four detectors of interfering
narrowband Sgnasin Rayleigh fading. The lineup: Sngle user detector; zero forcing (ZF),
minimum mean squared error (MM SE) and maximum likelihood (ML). All detectors work on
the same received sgnds, for more accurate comparisons.

Notation is asfollows:
K number of users M number of antennas
b length-K vector of bitsfrom all users

A KxK diagond array of amplitudes of al users

C MxK aray of gains, Gaussan, variance 1/2; column k Caknisfor user k.

n length-M array of noises on the antennas; unit variance (i.e. normalised so N,=1). With
the noise normalisation, we have each amplitude as Ax = / 2°Gi , where G, isthe
user-k SNR.

Severd useful procedures are in the Appendix.

2. One-Shot Test of Simulation

In this section, we build up the Smulation, to see how it fitstogether. In the next section, we condense

to asingle procedure that does many, many trids. Highlighted regions are parameter inpuit.
K:=2 M =2  usersand antennas, resp. Ik = identity(K) 1y, := identity(M)

b := datavec(K) transmitted data (for another realisation, click on equation and press F9)

Lgg=0 L = nat(L dB) ratio of user 1 power to user O power (SIR)
GdBO =3 Go = nangBOE Gp = Goi the two SNRs

d C make the diagona matrix of amplitudes (sgrt computed component
A= dage/2Ge (0 plitues (sort comp ponent by

C:= = >gaussarray(M , K) generate the matrix of channd gains, dl i.i.d., variance 1/2
\/—2 (for another redlisation, click on equation and press F9)
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F:=CHA more concise notation

n = gaussaray(M,1)  thevector of noises, variance 1 (for another redisation, click on

equation and press F9)
y=Fb+n vector of matched filter outputs
"_/I_.

z=F% sufficient Satigtics (basically max retio combining)

Single User Detector
Y YR

by = sgn( z) pretends other users aren't there

Zero Forcing

bhat := éF ¢ ¢ pseudoinverse on y b := sgn(bhat)

MMSE
. . -1 ~. e |
bhat := T%’?—'F + Zng X/ or  bha = ?TF + ZXKE Z different, but equivaent,
forms
YaYa HB
brmse = S9n(bhat)
ML
generate matrix of al possible data patterns
i=0.2¢ 1 B = int_to_bvec(i,K)
caculate metric of dl patterns, then find index of minimum metric
s o~ 2 e ~
metricj = (‘y - C>A>Ban‘) iopt := smdlest(metric)1 By = gopt
Compare the decisions
@l0 &elo elo elo
be =C byf=c = b =C = by =C =
STe1 g 178 1p MME e 1g M~ e 1g
a0 a9 @ o]
errs(b b) =C < errs(bzf b) c = errs(bmmse,b) =C errs(bm| b) c =
elg e0 elg



3. THE FULL
SIMULATION

Here we put al the detectors
head-to-head in the same
environment. May the best
detector win.

MUDfight(K M ,A,Ns-m) =

Hereisonerun. Well do severd of them further below.

MUDfignt (K ,M ,A, 1000) =

a20.092 0.09 0.054 0.034 0

©0.097 0.093 0.062 0.0355

A column for each detector: single-user,
ZF, MMSE and ML. Row Qisuser 0,

row lisuser 1.

Ik — identity(K)

for il 0.2K-1

Baﬁ—u int_to_bvec(i,K)
E- zeros(K,4)

for ni 1..Ngm
b - datavec(K)

1

NE

F- CA

C- gaussarray(M , K)

y - Pb+ gaussarray(M, 1)

.

Z FT>y
%4 Y4R)
bg - sgn(z)
Ea)n—. Eam+ errs(bs,b)
- -1
¢
bhat - OF ¥y
a3, AR

bt = sgn(bhat)

Eéllﬁ - Eéllﬁ + errs( b, b)

~. o

T 0]

bhet ~ OF F + 2k g 2
/R 78 )
Bmmse = SON(bhat)

Eazn - EaQn + errs(b

mmse’b)
for it 0.2 1
Metricj — (‘y- FBéﬁ‘)z
iopt = gndlest(metric)q

Gopth
by~ B

EéBﬁ = EEBﬁ + errs(bm| ,b)

am
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and this one loops through a sequence of SNR vaues.

MUDGurves( M, GOdB ,L dB ,Ngi) = |K = lengih(L dB)
dl - zeros(1,8)
for il 0..length(GOdB) - 1

GdB = GOdB;ones(K ,1) + L dB
Y2 ¥Ya®

A~ diag(A)
BERs- MUDfight(K ,M,A,Ngp)

keep ~ augment(GdB , K ones(K , 1), Msones(K , 1))
keep - augrnent(keep,Ns-mnn&s(K,l),BERs)

dl - stack(dl, keep)

al

Next, we run and save the smulation for BERs at a sequence of SNR vaues. This group isfor
equipower users. It'sinthe areabelow that we harvest the results of our work in building the
gmulation.

K:=2 M =2 usersand antennas, resp.

k:=0..K-1 LdBk:=0 rato(indB) of useri power to user O power

' a®0
?6 9 LdB=c¢C =
10 - e0g
GOB =% T Ngpy:= 500000
15+
C =
€20 g

resultsl :

MUDcurves( M, GOdB , L dB, Ng)®

resultsl := submatrix(resultsl, 1, rows(resultsl) - 1,0, cols(resultsl) - 1)l trim off the row of zeros

WRITEPRN ("equipowerdet.txt") = results1” temp ;= READPRN("equipowerdet.txt")T
average the rows, snce equipower, same BER i = O..w -1

BER = 054 temp® + temp2* 1) BER = BER'
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Detection: 2 equipower users, 2 antennas
0.1 | |

Trids of 106 bits for each point.

0.01 >

_3 | .\‘ 7
% 1-10
1104 F .
10D | |
110 5 10 15 20
S\R (dB)
—— dngle user detector
—— zeroforcing
MMSE
B ML

ref: MRC, M=2, K=1
— ref: MRC, M=1, K=1

With equipower users, the single-user detector isusaess. As expected, MM SE is alittle better than ZF (caution -
thisisfor equipower users), but both have lost an order of diversty. Also as expected, ML isbest and retains the
dud diversity. It seems unaffected by the interference.

4. NEAR-FAR EFFECTS

In this section, we examine the effects of dissmilar power levels among users. User 1isafew dB below user O.

K:=2 M =2 usersand antennas, resp.
LdBp:=0 LdBg:=-10 ratio (in dB) of user i power to user O power
ab 0
2101
GOdB = ¢15+ Ngm = 500000
$20~
C =
€25 g
i [ |
resuits2 = MUDGurves( M, GOdB , L dB ,Ng)

results? := submatrix(results2, 1, rows(results?) - 1,0, cols(results?) - 1)l trim off the row of zeros

WRITEPRN ("paiff10xt") := results?
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Asafirg presentation of the results, well plot againgt the SNIR of the stronger user. Ignore the sSingle-user
detector. Triasof 500,000 hits for each point.

BER := READPRN ("pdiffl0txt")  r:= rows(BER) i:= 0,2..rows(BER) - 2

2 users, 2 antennas, but 10 dB pwr diff Observations

* ZFisequivdent to MRC with
one user and one antenna. Weak
shifted right by exactly 10 dB with
respect to strong user.

* Weak MM SE user has same
error rate asweak ZF, since
MMSE acts much like ZF for it.

* Strong MM SE user islike ML,

at SNR region where weak user
has power comparable to noise;
i | | | e M :
110 asymptotic Single diversity, but il
5 10 15 20 25 much better than strong ZF user.
SNR of stronger user (dB)
— zeroforcing, wesker * ML has dua diversity for both
— zeroforcing, stronger users, wesk curve shifted right
MM SE, weaker with respect to stronger user.
R MMSE, stronger
ML, weaker
— ML, stronger

Wheat if we plot againgt the user's own SNR? Should be reveding. Thefirstisfor MMSE.

2 users, 2 antennas, but 10 dB pwr diff Observations
1 T I T T I

* Plotting againgt own SNIR removes
01pr 1 the obviousissue that week users
would have poorer BER, anyway.
0.01 - -

BER

* In the overlap area, the Stronger

1103 kL - user getsthe better of it, even after

accounting for power digparity.

1104 - Weaker user is disadvantaged by
presence of stronger.

. | 1 | | 1
1107 5 0 5 10 15 20 25 * Concluson: MM SE isonly patidly
users *own* SNR (dB) effective againg near-far differences,
— MMSE, wesker equivaently, power disparities.

— MMSE, stronger
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And our third plot shows ML detection, again when plotted against own SNR.

2 users, 2 antennas, but 10 dB pwr diff
1 T T T T T Obsarvations

* ML is much more robust in face of
near-far or power disparities.

* |n condrast to MM SE, it isthe weaker
user who gets alittle more benefit from
ML-MUD. But remember the
assumption of perfect CSI. Hmmm.

—6 | | | | |
110" 5 0 5 10 15 20 25
users *own* SNR (dB)
— ML, weaker
— ML, stronger

ref: MRC, M=2, K=1
Do things change if thereisa 20 dB power difference? Let'shavealook. Thistime 1.2 million trids.

BER := READPRN ("pdiff20.txt") r := rows(BER) I:=0,2..rows(BER) - 2

2 users, 2 antennas, but 20 dB pwr diff
1 T T T T

Obsarvations
0.1 * For the stronger user, MMSE is
as good as ML over much of the
0.01 range; however, thisis because it
. is, in effect, asngle user system,
gl 103 and both operate like MRC. With
more than one strong user, MM SE
1104 would again lose orders of diversty.
110 °
1 .10—6 | | | |

5 10 15 20 25 30
SNR of stronger user (dB)
———— zeroforcing, wesker
—— zeroforcing, stronger
MM SE, weaker
B MM SE, stronger
ML, weaker
— ML, stronger
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Next, we plot againgt the user'sown SNR, aswe did before. Thefirst isfor MMSE.

2 users, 2 antennas, but 20 dB pwr diff

01}
0.01 |-
o -3
Ll . -
i 110
1104 F

110 ~

—6

=

1-10

-10 0 10 20
users *own* SNR (dB)
MM SE, weaker
— MMSE, stronger

Obsarvations

* Inthe overlap area, the stronger
user getsthe better of it, even after
accounting for power disparity.
Weaker user is disadvantaged by
presence of stronger.

* Concluson: MM SE isonly partidly
effective againg near-far differences,
equivaently, power digparities.

And our last plot shows ML detection, again when plotted against own SNR.

2 users, 2 antennas, but 20 dB pwr diff

01}
0.01 F
o -3
Ll . |-
i 110
1104 F

110 -

6

1-10

-10 0 10 20
users *own* SNR (dB)
ML, wesker

ML, stronger

30

Obsarvations

* ML is much more robust in face
of near-far or power digparities.

* |n ML-MUD, the userstrack the
same curve. MUD has not
disadvantaged either user.



APPENDIX A: USEFUL FUNCTIONS
This gppendix contains afew "housekegping” functions that smplify the smulation.

Basic definitions and functions

andler(x,y) ° if(x < y,X,y) larger(x,y) ° if(X>y,X,y)

14

B ° if(x> 10 ,10>tog(x),-140) nat(x) © 10°01%

n(x) © if(Re(x) 3 0,1,-1)

Manipulations of binary data vectors

Hamming error vector

ers(b,c) © |e- b-c
for il 0..length(e) - 1
€ - if(ei = 0,0,1)

e

Conversions between integers and binary data vectors (of +1,-1)

int_to bvec(n,N) © [i—= O
bvec to int(b) © |sum- 0O
while i< N to.nt(b) R
for il O..rows(b) - 1
rem- mod(n,2)
i-1
b~ if(rem=1,1,-1) am- sum+ 2" b + 1)
n- floorc==
e2g
i- i+1
b

Generate random vectors and arrays

Generate random data vector

datavec(N) © int_to_bvec(floor(rnd(ZN)) ,N)

Generate array (N, x N) of variance 1 complex Gaussian
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cgauss(X) © 4/ - 2>kn(rnd(1))>exp(j >md(2>p)) unit variance complex Gaussan

gausaarray(Nr, Nc) 0

A

Array manipulations

Make an all-zeros array

zeros(Nr,NC) 0

for irl 0.N,-1
for icl 0--Nc' 1

Airic~ O

A

for irl 0.N,-1
for icl 0--Nc' 1

Aijr ic = cgauss(ir)

Make an al-ones array

on&(Nr,NC) o | for irl 0.N,-1

find smdlest/largest in an array; return the value and its index:

smdles(x) ©

grdl - 107
for il 0..rows(x) - 1
if x < smal
smdl = X
i small - |

(sval i gmal)’

largest(x) ©

for icl 0--Nc' 1

Air,icﬂ 1

A

large - -1015
for il 0..rows(x) - 1

if x > lage

large = X

I_large— i

(lage i lage)'
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