
K 2:= M 2:= users and antennas, resp. IK identity K():= IM identity M():=

b datavec K():= transmitted data (for another realisation, click on equation and press F9)

ΛdB 0:= Λ nat ΛdB():= ratio of user 1 power to user 0 power (SIR)

ΓdB0
3:= Γ0 nat ΓdB0







:= Γ1 Γ0 Λ⋅:= the two SNRs

make the diagonal matrix of amplitudes (sqrt computed component by
component)

A diag 2 Γ⋅
→



:=

C
1

2
gaussarray M K,()⋅:= generate the matrix of channel gains, all i.i.d., variance 1/2

(for another realisation, click on equation and press F9)

6.B SIMULATION OF MUD WITHOUT SIGNATURES

1. INTRODUCTION

 The simulation in this worksheet compares the performance of four detectors of interfering
narrowband signals in Rayleigh fading. The lineup: single user detector; zero forcing (ZF),
minimum mean squared error (MMSE) and maximum likelihood (ML). All detectors work on
the same received signals, for more accurate comparisons.

Notation is as follows:

K number of users M number of antennas

b length-K vector of bits from all users

A KxK diagonal array of amplitudes of all users

C MxK array of gains; Gaussian, variance 1/2; column k C k〈 〉
 is for user k.

n length-M array of noises on the antennas; unit variance (i.e. normalised so No=1). With
the noise normalisation, we have each amplitude as Ak 2 Γk⋅= , where Γk is the
user-k SNR.

Several useful procedures are in the Appendix.

2. One-Shot Test of Simulation

 In this section, we build up the simulation, to see how it fits together. In the next section, we condense
to a single procedure that does many, many trials. Highlighted regions are parameter input.

6.B.2

different, but equivalent,
forms

bmmse sgn bhat()
→

:=

ML
generate matrix of all possible data patterns

i 0 2K 1−..:= B i〈 〉
int_to_bvec i K,():=

calculate metric of all patterns, then find index of minimum metric

metrici y C A⋅ B i〈 〉
⋅−()2

:= iopt smallest metric()1:= bml B iopt〈 〉
:=

Compare the decisions

bs
1−

1









= bzf
1−

1−









= bmmse
1−

1−









= bml
1−

1−









=

errs bs b,()
0

1









= errs bzf b,()
0

0









= errs bmmse b,()
0

0









= errs bml b,()
0

0









=

F C A⋅:= more concise notation

n gaussarray M 1,():= the vector of noises, variance 1 (for another realisation, click on
equation and press F9)

y F b⋅ n+:= vector of matched filter outputs

ζ F
T


y⋅:= sufficient statistics (basically max ratio combining)

Single User Detector

bs sgn ζ()
→

:= pretends other users aren't there

Zero Forcing

bhat F
T


F⋅






1−

ζ⋅:= pseudoinverse on y bzf sgn bhat()
→

:=

MMSE

bhat F
T


F F
T


⋅ 2 IM⋅+






1−

⋅ y⋅:= or bhat F
T


F⋅ 2 IK⋅+






1−

ζ⋅:=

2

6.B.3

MUDfight K M, A, Nsim,() IK identity K()←

B i〈 〉
int_to_bvec i K,()←

i 0 2K 1−..∈for

E zeros K 4,()←

b datavec K()←

C
1

2
gaussarray M K,()⋅←

F C A⋅←

y F b⋅ gaussarray M 1,()+←

ζ F
T


y⋅←

bs sgn ζ()
→

←

E 0〈 〉
E 0〈 〉

errs bs b,()+←

bhat F
T


F⋅






1−

ζ⋅←

bzf sgn bhat()
→

←

E 1〈 〉
E 1〈 〉

errs bzf b,()+←

bhat F
T


F⋅ 2 IK⋅+






1−

ζ⋅←

bmmse sgn bhat()
→

←

E 2〈 〉
E 2〈 〉

errs bmmse b,()+←

metrici y F B i〈 〉
⋅−()2

←

i 0 2K 1−..∈for

iopt smallest metric()1←

bml B iopt〈 〉
←

E 3〈 〉
E 3〈 〉

errs bml b,()+←

n 1 Nsim..∈for

E
Nsim

:=3. THE FULL
SIMULATION

Here we put all the detectors
head-to-head in the same
environment. May the best
detector win.

Here is one run. We'll do several of them further below.

MUDfight K M, A, 1000,()
0.092

0.097

0.09

0.093

0.054

0.062

0.034

0.035









=

A column for each detector: single-user,
ZF, MMSE and ML. Row 0 is user 0,
row 1 is user 1.

3

6.B.4

BER BER
T

:=BER i〈 〉
0.5 temp 2 i⋅〈 〉

temp 2 i⋅ 1+〈 〉
+()⋅:=

i 0
cols temp()

2
1−..:=average the rows, since equipower, same BER

temp READPRN "equipowerdet.txt"()
T

:=WRITEPRN "equipowerdet.txt"() results1:=

trim off the row of zeros results1 submatrix results1 1, rows results1() 1−, 0, cols results1() 1−,():=

results1 MUDcurves M Γ0dB, ΛdB, Nsim,():=

Nsim 500000:=Γ0dB

5

10

15

20















:=

ΛdB
0

0









=

ratio (in dB) of user i power to user 0 powerΛdBk 0:=k 0 K 1−..:=

users and antennas, resp.M 2:=K 2:=

 Next, we run and save the simulation for BERs at a sequence of SNR values. This group is for
equipower users. It's in the area below that we harvest the results of our work in building the
simulation.

start all with a row of zeros
to get stacking of results started

MUDcurves M Γ0dB, ΛdB, Nsim,() K length ΛdB()←

all zeros 1 8,()←

ΓdB Γ0dBi ones K 1,()⋅ ΛdB+←

A 2 nat ΓdB()⋅
→

←

A diag A()←

BERs MUDfight K M, A, Nsim,()←

keep augment ΓdB K ones K 1,()⋅, M ones K 1,()⋅,()←

keep augment keep Nsim ones K 1,()⋅, BERs,()←

all stack all keep,()←

i 0 length Γ0dB() 1−..∈for

all

:=

and this one loops through a sequence of SNR values:

4

6.B.5

WRITEPRN "pdiff10.txt"() results2:=

trim off the row of zeros results2 submatrix results2 1, rows results2() 1−, 0, cols results2() 1−,():=

results2 MUDcurves M Γ0dB, ΛdB, Nsim,():=

Nsim 500000:=Γ0dB

5

10

15

20

25

















:=

ratio (in dB) of user i power to user 0 powerΛdB1 10−:=ΛdB0 0:=

users and antennas, resp.M 2:=K 2:=

In this section, we examine the effects of dissimilar power levels among users. User 1 is a few dB below user 0.

4. NEAR-FAR EFFECTS

With equipower users, the single-user detector is useless. As expected, MMSE is a little better than ZF (caution -
this is for equipower users), but both have lost an order of diversity. Also as expected, ML is best and retains the
dual diversity. It seems unaffected by the interference.

Trials of 106 bits for each point.

5 10 15 20
1 .10 5

1 .10 4

1 .10 3

0.01

0.1

single user detector
zero forcing
MMSE
ML
ref: MRC, M=2, K=1
ref: MRC, M=1, K=1

Detection: 2 equipower users, 2 antennas

SNR (dB)

B
E

R

5

6.B.6

As a first presentation of the results, we'll plot against the SNR of the stronger user. Ignore the single-user
detector. Trials of 500,000 bits for each point.

BER READPRN "pdiff10.txt"():= r rows BER():= i 0 2, rows BER() 2−..:=

5 10 15 20 25
1 .10 6

1 .10 5

1 .10 4

1 .10 3

0.01

0.1

1

zero forcing, weaker
zero forcing, stronger
MMSE, weaker
MMSE, stronger
ML, weaker
ML, stronger

2 users, 2 antennas, but 10 dB pwr diff

SNR of stronger user (dB)

B
E

R

Observations

* ZF is equivalent to MRC with
one user and one antenna. Weak
shifted right by exactly 10 dB with
respect to strong user.

* Weak MMSE user has same
error rate as weak ZF, since
MMSE acts much like ZF for it.

* Strong MMSE user is like ML,
at SNR region where weak user
has power comparable to noise;
asymptotic single diversity, but still
much better than strong ZF user.

* ML has dual diversity for both
users; weak curve shifted right
with respect to stronger user.

What if we plot against the user's own SNR? Should be revealing. The first is for MMSE.

5 0 5 10 15 20 25
1 .10 5

1 .10 4

1 .10 3

0.01

0.1

1

MMSE, weaker
MMSE, stronger

2 users, 2 antennas, but 10 dB pwr diff

users *own* SNR (dB)

B
E

R

Observations

* Plotting against own SNR removes
the obvious issue that weak users
would have poorer BER, anyway.

* In the overlap area, the stronger
user gets the better of it, even after
accounting for power disparity.
Weaker user is disadvantaged by
presence of stronger.

* Conclusion: MMSE is only partially
effective against near-far differences;
equivalently, power disparities.

6

6.B.7

And our third plot shows ML detection, again when plotted against own SNR.

5 0 5 10 15 20 25
1 .10 6

1 .10 5

1 .10 4

1 .10 3

0.01

0.1

1

ML, weaker
ML, stronger
ref: MRC, M=2, K=1

2 users, 2 antennas, but 10 dB pwr diff

users *own* SNR (dB)

B
E

R

Observations

* ML is much more robust in face of
near-far or power disparities.

* In constrast to MMSE, it is the weaker
user who gets a little more benefit from
ML-MUD. But remember the
assumption of perfect CSI. Hmmm.

 Do things change if there is a 20 dB power difference? Let's have a look. This time 1.2 million trials.

BER READPRN "pdiff20.txt"():= r rows BER():= i 0 2, rows BER() 2−..:=

5 10 15 20 25 30
1 .10 6

1 .10 5

1 .10 4

1 .10 3

0.01

0.1

1

zero forcing, weaker
zero forcing, stronger
MMSE, weaker
MMSE, stronger
ML, weaker
ML, stronger

2 users, 2 antennas, but 20 dB pwr diff

SNR of stronger user (dB)

B
E

R

Observations

* For the stronger user, MMSE is
as good as ML over much of the
range; however, this is because it
is, in effect, a single user system,
and both operate like MRC. With
more than one strong user, MMSE
would again lose orders of diversity.

7

6.B.8

Next, we plot against the user's own SNR, as we did before. The first is for MMSE.

20 10 0 10 20 30
1 .10 6

1 .10 5

1 .10 4

1 .10 3

0.01

0.1

1

MMSE, weaker
MMSE, stronger

2 users, 2 antennas, but 20 dB pwr diff

users *own* SNR (dB)

B
E

R
Observations

* In the overlap area, the stronger
user gets the better of it, even after
accounting for power disparity.
Weaker user is disadvantaged by
presence of stronger.

* Conclusion: MMSE is only partially
effective against near-far differences;
equivalently, power disparities.

And our last plot shows ML detection, again when plotted against own SNR.

20 10 0 10 20 30
1 .10 6

1 .10 5

1 .10 4

1 .10 3

0.01

0.1

1

ML, weaker
ML, stronger

2 users, 2 antennas, but 20 dB pwr diff

users *own* SNR (dB)

B
E

R

Observations

* ML is much more robust in face
of near-far or power disparities.

* In ML-MUD, the users track the
same curve. MUD has not
disadvantaged either user.

8

6.B.9

Generate array (Nr x Nc) of variance 1 complex Gaussian

datavec N() int_to_bvec floor rnd 2N()() N,()≡

Generate random data vector

Generate random vectors and arrays

bvec_to_int b() sum 0←

sum sum 2i 1− bi 1+()⋅+←

i 0 rows b() 1−..∈for

sum

≡
int_to_bvec n N,() i 0←

rem mod n 2,()←

bi if rem 1= 1, 1−,()←

n floor
n
2







←

i i 1+←

i N<while

b

≡

Conversions between integers and binary data vectors (of +1,-1)

errs b c,() e b c−←

ei if ei 0= 0, 1,()←

i 0 length e() 1−..∈for

e

≡

Hamming error vector

Manipulations of binary data vectors

sgn x() if Re x() 0≥ 1, 1−,()≡

nat x() 100.1 x⋅≡dB x() if x 10 14−> 10 log x()⋅, 140−,()≡

larger x y,() if x y> x, y,()≡smaller x y,() if x y< x, y,()≡

Basic definitions and functions

 This appendix contains a few "housekeeping" functions that simplify the simulation.

APPENDIX A: USEFUL FUNCTIONS

9

6.B.10

cgauss x() 2− ln rnd 1()()⋅ exp j rnd 2 π⋅()⋅()⋅≡ unit variance complex Gaussian

gaussarray Nr Nc,()

Air ic, cgauss ir()←

ic 0 Nc 1−..∈for

ir 0 Nr 1−..∈for

A

≡

Array manipulations

Make an all-zeros array Make an all-ones array

zeros Nr Nc,()

Air ic, 0←

ic 0 Nc 1−..∈for

ir 0 Nr 1−..∈for

A

≡ ones Nr Nc,()

Air ic, 1←

ic 0 Nc 1−..∈for

ir 0 Nr 1−..∈for

A

≡

find smallest/largest in an array; return the value and its index:

smallest x() small 1015←

small xi←

i_small i←

xi small<if

i 0 rows x() 1−..∈for

small i_small()
T

≡ largest x() large 1015−←

large xi←

i_large i←

xi large>if

i 0 rows x() 1−..∈for

large i_large()
T

≡

10

