
K 2:= M 2:= users and antennas, resp. IK identity K( ):= IM identity M( ):=

b datavec K( ):= transmitted data (for another realisation, click on equation and press F9) 

ΛdB 0:= Λ nat ΛdB( ):= ratio of user 1 power to user 0 power (SIR)

ΓdB0
3:= Γ0 nat ΓdB0







:= Γ1 Γ0 Λ⋅:= the two SNRs

make the diagonal matrix of amplitudes (sqrt computed component by 
component)

A diag 2 Γ⋅
→



:=

C
1

2
gaussarray M K,( )⋅:= generate the matrix of channel gains, all i.i.d., variance 1/2

(for another realisation, click on equation and press F9)

6.B  SIMULATION OF MUD WITHOUT SIGNATURES

1. INTRODUCTION

     The simulation in this worksheet compares the performance of four detectors of interfering 
narrowband signals in Rayleigh fading.  The lineup: single user detector; zero forcing (ZF), 
minimum mean squared error (MMSE) and maximum likelihood (ML).  All detectors work on 
the same received signals, for more accurate comparisons.

Notation is as follows:

K number of users M number of antennas

b length-K vector of bits from all users

A KxK diagonal array of amplitudes of all users

C MxK array of gains; Gaussian, variance 1/2; column k C k〈 〉
 is for user k.

n length-M array of noises on the antennas; unit variance (i.e. normalised so No=1).  With 
the noise normalisation, we have each amplitude as Ak 2 Γk⋅=  , where Γk is the 
user-k SNR.  

Several useful procedures are in the Appendix.

2.  One-Shot Test of Simulation

     In this section, we build up the simulation, to see how it fits together.  In the next section, we condense 
to a single procedure that does many, many trials.  Highlighted regions are parameter input.



6.B.2

different, but equivalent, 
forms

bmmse sgn bhat( )
→

:=

ML 
generate matrix of all possible data patterns

i 0 2K 1−..:= B i〈 〉
int_to_bvec i K,( ):=

calculate metric of all patterns, then find index of minimum metric

metrici y C A⋅ B i〈 〉
⋅−( )2

:= iopt smallest metric( )1:= bml B iopt〈 〉
:=

Compare the decisions

bs
1−

1









= bzf
1−

1−









= bmmse
1−

1−









= bml
1−

1−









=

errs bs b,( )
0

1









= errs bzf b,( )
0

0









= errs bmmse b,( )
0

0









= errs bml b,( )
0

0









=

F C A⋅:= more concise notation

n gaussarray M 1,( ):= the vector of noises, variance 1 (for another realisation, click on 
equation and press F9)

y F b⋅ n+:= vector of matched filter outputs

ζ F
T


y⋅:= sufficient statistics (basically max ratio combining)

Single User Detector

bs sgn ζ( )
→

:= pretends other users aren't there

Zero Forcing

bhat F
T


F⋅






1−

ζ⋅:= pseudoinverse on y bzf sgn bhat( )
→

:=

MMSE 

bhat F
T


F F
T


⋅ 2 IM⋅+






1−

⋅ y⋅:= or bhat F
T


F⋅ 2 IK⋅+






1−

ζ⋅:=

2
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MUDfight K M, A, Nsim,( ) IK identity K( )←

B i〈 〉
int_to_bvec i K,( )←

i 0 2K 1−..∈for

E zeros K 4,( )←

b datavec K( )←

C
1

2
gaussarray M K,( )⋅←

F C A⋅←

y F b⋅ gaussarray M 1,( )+←

ζ F
T


y⋅←

bs sgn ζ( )
→

←

E 0〈 〉
E 0〈 〉

errs bs b,( )+←

bhat F
T


F⋅






1−

ζ⋅←

bzf sgn bhat( )
→

←

E 1〈 〉
E 1〈 〉

errs bzf b,( )+←

bhat F
T


F⋅ 2 IK⋅+






1−

ζ⋅←

bmmse sgn bhat( )
→

←

E 2〈 〉
E 2〈 〉

errs bmmse b,( )+←

metrici y F B i〈 〉
⋅−( )2

←

i 0 2K 1−..∈for

iopt smallest metric( )1←

bml B iopt〈 〉
←

E 3〈 〉
E 3〈 〉

errs bml b,( )+←

n 1 Nsim..∈for

E
Nsim

:=3.  THE FULL 
SIMULATION

Here we put all the detectors 
head-to-head in the same 
environment.  May the best 
detector win.

Here is one run.  We'll do several of them further below.

MUDfight K M, A, 1000,( )
0.092

0.097

0.09

0.093

0.054

0.062

0.034

0.035









=

A column for each detector: single-user,
ZF, MMSE and ML.  Row 0 is user 0,
row 1 is user 1.

3
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BER BER
T

:=BER i〈 〉
0.5 temp 2 i⋅〈 〉

temp 2 i⋅ 1+〈 〉
+( )⋅:=

i 0
cols temp( )

2
1−..:=average the rows, since equipower, same BER

temp READPRN "equipowerdet.txt"( )
T

:=WRITEPRN "equipowerdet.txt"( ) results1:=

trim off the row of zeros results1 submatrix results1 1, rows results1( ) 1−, 0, cols results1( ) 1−,( ):=

results1 MUDcurves M Γ0dB, ΛdB, Nsim,( ):=

Nsim 500000:=Γ0dB

5

10

15

20















:=

ΛdB
0

0









=

ratio (in dB) of user i power to user 0 powerΛdBk 0:=k 0 K 1−..:=

users and antennas, resp.M 2:=K 2:=

     Next, we run and save the simulation for BERs at a sequence of SNR values.  This group is for 
equipower users.   It's in the area below that we harvest the results of our work in building the 
simulation.

start all with a row of zeros
to get stacking of results started

MUDcurves M Γ0dB, ΛdB, Nsim,( ) K length ΛdB( )←

all zeros 1 8,( )←

ΓdB Γ0dBi ones K 1,( )⋅ ΛdB+←

A 2 nat ΓdB( )⋅
→

←

A diag A( )←

BERs MUDfight K M, A, Nsim,( )←

keep augment ΓdB K ones K 1,( )⋅, M ones K 1,( )⋅,( )←

keep augment keep Nsim ones K 1,( )⋅, BERs,( )←

all stack all keep,( )←

i 0 length Γ0dB( ) 1−..∈for

all

:=

and this one loops through a sequence of SNR values:

4
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WRITEPRN "pdiff10.txt"( ) results2:=

trim off the row of zeros results2 submatrix results2 1, rows results2( ) 1−, 0, cols results2( ) 1−,( ):=

results2 MUDcurves M Γ0dB, ΛdB, Nsim,( ):=

Nsim 500000:=Γ0dB

5

10

15

20

25

















:=

ratio (in dB) of user i power to user 0 powerΛdB1 10−:=ΛdB0 0:=

users and antennas, resp.M 2:=K 2:=

In this section, we examine the effects of dissimilar power levels among users.  User 1 is a few dB below user 0.

4.  NEAR-FAR EFFECTS

With equipower users, the single-user detector is useless.  As expected, MMSE is a little better than ZF (caution - 
this is for equipower users), but both have lost an order of diversity.  Also as expected, ML is best and retains the 
dual diversity.  It seems unaffected by the interference.  

Trials of 106 bits for each point.

5 10 15 20
1 .10 5

1 .10 4

1 .10 3

0.01

0.1

single user detector
zero forcing
MMSE
ML
ref: MRC, M=2, K=1
ref: MRC, M=1, K=1

Detection: 2 equipower users, 2 antennas

SNR (dB)

B
E

R

5



6.B.6

As a first presentation of the results, we'll plot against the SNR of the stronger user.  Ignore the single-user 
detector.  Trials of 500,000 bits for each point.  

BER READPRN "pdiff10.txt"( ):= r rows BER( ):= i 0 2, rows BER( ) 2−..:=

5 10 15 20 25
1 .10 6

1 .10 5

1 .10 4

1 .10 3

0.01

0.1

1

zero forcing, weaker
zero forcing, stronger
MMSE, weaker
MMSE, stronger
ML, weaker
ML, stronger

2 users, 2 antennas, but 10 dB pwr diff

SNR of stronger user (dB)

B
E

R

Observations 

*  ZF is equivalent to MRC with 
one user and one antenna.  Weak 
shifted right by exactly 10 dB with 
respect to strong user.

*  Weak MMSE user has same 
error rate as weak ZF, since 
MMSE acts much like ZF for it.

*  Strong MMSE user is like ML, 
at SNR region where weak user 
has power comparable to noise; 
asymptotic single diversity, but still 
much better than strong ZF user.

*  ML has dual diversity for both 
users; weak curve shifted right 
with respect to stronger user.

What if we plot against the user's own SNR?  Should be revealing.  The first is for MMSE.

5 0 5 10 15 20 25
1 .10 5

1 .10 4

1 .10 3

0.01

0.1

1

MMSE, weaker
MMSE, stronger

2 users, 2 antennas, but 10 dB pwr diff

users *own* SNR  (dB)

B
E

R

Observations 

*  Plotting against own SNR removes 
the obvious issue that weak users 
would have poorer BER, anyway.

*  In the overlap area, the stronger 
user gets the better of it, even after 
accounting for power disparity.  
Weaker user is disadvantaged by 
presence of stronger.

*  Conclusion: MMSE is only partially 
effective against near-far differences; 
equivalently, power disparities.

6
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And our third plot shows ML detection, again when plotted against own SNR.

5 0 5 10 15 20 25
1 .10 6

1 .10 5

1 .10 4

1 .10 3

0.01

0.1

1

ML, weaker
ML, stronger
ref: MRC, M=2, K=1

2 users, 2 antennas, but 10 dB pwr diff

users *own* SNR  (dB)

B
E

R

Observations 

*  ML is much more robust in face of 
near-far or power disparities.

*  In constrast to MMSE, it is the weaker 
user who gets a little more benefit from 
ML-MUD.  But remember the 
assumption of perfect CSI.  Hmmm.

  Do things change if there is a 20 dB power difference?  Let's have a look.  This time 1.2 million trials.

BER READPRN "pdiff20.txt"( ):= r rows BER( ):= i 0 2, rows BER( ) 2−..:=

5 10 15 20 25 30
1 .10 6

1 .10 5

1 .10 4

1 .10 3

0.01

0.1

1

zero forcing, weaker
zero forcing, stronger
MMSE, weaker
MMSE, stronger
ML, weaker
ML, stronger

2 users, 2 antennas, but 20 dB pwr diff

SNR of stronger user (dB)

B
E

R

Observations

*  For the stronger user, MMSE is 
as good as ML over much of the 
range; however, this is because it 
is, in effect, a single user system, 
and both operate like MRC.  With 
more than one strong user, MMSE 
would again lose orders of diversity.

7
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Next, we plot against the user's own SNR, as we did  before.  The first is for MMSE.

20 10 0 10 20 30
1 .10 6

1 .10 5

1 .10 4

1 .10 3

0.01

0.1

1

MMSE, weaker
MMSE, stronger

2 users, 2 antennas, but 20 dB pwr diff

users *own* SNR  (dB)

B
E

R
Observations 

*  In the overlap area, the stronger 
user gets the better of it, even after 
accounting for power disparity.  
Weaker user is disadvantaged by 
presence of stronger.

*  Conclusion: MMSE is only partially 
effective against near-far differences; 
equivalently, power disparities.

And our last plot shows ML detection, again when plotted against own SNR.

20 10 0 10 20 30
1 .10 6

1 .10 5

1 .10 4

1 .10 3

0.01

0.1

1

ML, weaker
ML, stronger

2 users, 2 antennas, but 20 dB pwr diff

users *own* SNR  (dB)

B
E

R

Observations 

*  ML is much more robust in face 
of near-far or power disparities.

*  In ML-MUD, the users track the 
same curve.  MUD has not 
disadvantaged either user.

8
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Generate array (Nr x Nc) of variance 1 complex Gaussian

datavec N( ) int_to_bvec floor rnd 2N( )( ) N,( )≡

Generate random data vector

Generate random vectors and arrays

bvec_to_int b( ) sum 0←

sum sum 2i 1− bi 1+( )⋅+←

i 0 rows b( ) 1−..∈for

sum

≡
int_to_bvec n N,( ) i 0←

rem mod n 2,( )←

bi if rem 1= 1, 1−,( )←

n floor
n
2







←

i i 1+←

i N<while

b

≡

Conversions between integers and binary data vectors (of +1,-1)

errs b c,( ) e b c−←

ei if ei 0= 0, 1,( )←

i 0 length e( ) 1−..∈for

e

≡

Hamming error vector

Manipulations of binary data vectors

sgn x( ) if Re x( ) 0≥ 1, 1−,( )≡

nat x( ) 100.1 x⋅≡dB x( ) if x 10 14−> 10 log x( )⋅, 140−,( )≡

larger x y,( ) if x y> x, y,( )≡smaller x y,( ) if x y< x, y,( )≡

Basic definitions and functions

     This appendix contains a few "housekeeping" functions that simplify the simulation.

APPENDIX A:  USEFUL FUNCTIONS

9
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cgauss x( ) 2− ln rnd 1( )( )⋅ exp j rnd 2 π⋅( )⋅( )⋅≡ unit variance complex Gaussian

gaussarray Nr Nc,( )

Air ic, cgauss ir( )←

ic 0 Nc 1−..∈for

ir 0 Nr 1−..∈for

A

≡

Array manipulations

Make an all-zeros array Make an all-ones array

zeros Nr Nc,( )

Air ic, 0←

ic 0 Nc 1−..∈for

ir 0 Nr 1−..∈for

A

≡ ones Nr Nc,( )

Air ic, 1←

ic 0 Nc 1−..∈for

ir 0 Nr 1−..∈for

A

≡

find smallest/largest in an array; return the value and its index:

smallest x( ) small 1015←

small xi←

i_small i←

xi small<if

i 0 rows x( ) 1−..∈for

small i_small( )
T

≡ largest x( ) large 1015−←

large xi←

i_large i←

xi large>if

i 0 rows x( ) 1−..∈for

large i_large( )
T

≡
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