
K 3:= M 3:= users and antennas, resp. IK identity K( ):= IM identity M( ):=

b datavec K( ):= transmitted data (for another realisation, click on equation and press F9) 

SNR of user 0 in dB dB ratio other users' power to user 0 power

ΓdB0 5:= ΛdB 0:=

array of SNRs

ΓdB0
ΓdB0:= i 1 K 1−..:= ΓdBi

ΓdB0 ΛdB−:= Γ nat ΓdB( )
→

:=

make the diagonal matrix of amplitudes (sqrt computed component by 
component)

A diag 2 Γ⋅
→



:=

6.D  SIMULATION COMPARISON OF SIC METHODS: WHITENING, 
V-BLAST AND MMSE V-BLAST

1. INTRODUCTION

     The simulation in this worksheet compares the performance of three successive interference 
cancellation algorithms: whitening, V-BLAST and MMSE V-BLAST.  They differ in the order in 
which bits are detected and in whether they use ZF or MMSE to obtain antenna weights.  All 
detectors work on the same received signals, for more accurate comparisons.

Notation is as follows:

K number of users M number of antennas

b length-K vector of bits from all users

A KxK diagonal array of amplitudes of all users

C MxK array of gains; Gaussian, variance 1/2; column k C k〈 〉
 is for user k.

n length-M array of noises on the antennas; unit variance (i.e. normalised so No=1).  With 
the noise normalisation, we have each amplitude as Ak 2 Γk⋅=  , where Γk is the 
user-k SNR.  

Several useful procedures are in the Appendix.

2.  One-Shot Test of Simulation

     In this section, we build up the simulation, to see how the methods work.  In Appendices B to D, they 
are condensed to single procedures.  Section 3 uses all three over many, many trials.  Highlighted regions 
are parameter input.
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F'

2.775− 1.641i−

2.304 1.491i+

1.604− 1.193i−

1.138 2.311i−

3.471 0.251i−

3.209− 1.025i+

0.817− 3.223i−

3.663 0.206i+

0.884 4.163i−









=

order

0

1

2









=F

2.775− 1.641i−

2.304 1.491i+

1.604− 1.193i−

1.138 2.311i−

3.471 0.251i−

3.209− 1.025i+

0.817− 3.223i−

3.663 0.206i+

0.884 4.163i−









=

and check that it worked:

F' temp:=temp k〈 〉
F

orderk( )〈 〉
:=

Rearrange the columns accordingly

order P 1〈 〉
:=P csort augment P index K( ),( ) 0,( ):=

The next line sorts by increasing power.  The 2nd column (column 1) contains the column index into F.

Pk F
T


F⋅




k k,:=k 0 K 1−..:=

In this method, we first sort the signals in order of increasing power, then do the SIC starting at the last bit.

2.1  Whitening SIC

vector of matched filter outputsy C A⋅ b⋅ n+:=

the vector of noises, variance 1 (for another realisation, click on 
equation and press F9)

n gaussarray M 1,( ):=

more concise notationF V A⋅:=

generate the matrix of channel gains, all i.i.d., variance 
1/2 (for another realisation, click on equation and press 
F9)

C ρ V⋅ 1 ρ
2

−
1

2
⋅ gaussarray M K,( )⋅+:=

generate the matrix of channel gain estimates, all i.i.d., 
variance 1/2 (for another realisation, click on equation and 
press F9)

V
1

2
gaussarray M K,( )⋅:=

correlation coefficient between channel gain estimates and their true valuesρ 1:=
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The whitening SIC algorithm is condensed to a single procedure in Appendix B. 

b

1−

1−

1−









=bw

1−

1−

1−









=compare these:bworderk
b'k:=

and restore the order

rest of SICb'j sgn

zj

j 1+

K 1−

i

Tj i, b'i⋅∑
=

−

Tj j,













:=j K 2− 0..:=

start the SICb'K 1− sgn
zK 1−

TK 1− K 1−,









:=

Now do the SIC on the reordered data bits, starting from last bit (the one with highest power):

T

4.682

0

0

2.602 0.629i−

4.788

0

4.239 2.21i+

0.509 0.023i+

4.417









=

is upper triangular - see belowT L 1− F'
T


⋅ F'⋅:=where 

z T b⋅ α+=so thatz L 1− F'
T


⋅ y⋅:=

Calculate triangularised sufficient statistics

L U
T


:=U submatrix orth 0, K 1−, 0, K 1−,( ):=orth GS F'( ):=

Now Cholesky factorise the reordered Gram matrix as F'
T


F'⋅ L L

T


⋅=   by performing Gram-Schmidt 
orthogonalisation on F.   
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Permute columns of F to put the just-processed column into column 0 for easy removal.  To check, look at F, 
step by step.  First, before manipulations:

subtract that bit's contributiony y F
order0( )〈 〉

b⋅−:=

Deflate the system by subtracting that bit's contribution to y, then removing the corresponding column of F and 
row of bitndx. 

bv bitndx0( )
b:=save decision b sgn W

order0( )〈 〉T
y⋅





0





:=

The column with index in location 0 of order has minimum norm of weight vector, i.e., min noise, i.e. max 
SNR, so we make a decision on that bit. 

bitndx

1

2

0









=order

1

2

0









=

bitndx Pv
2〈 〉

:=order Pv
1〈 〉

:=Pv csort augment augment Pv index K( ),( ) bitndx,( ) 0,( ):=

Sort by increasing column norm.  After the sort, column 1 contains permuted column indexes, column 2 
contains permuted bit indexes:

vector of column norms of W Pv diagxtract W
T


W⋅





:=

weight matrix in W
T

y⋅  is the pseudoinverse of FW G
T

:=G F
T


F⋅






1−

F
T


⋅:=

Select and detect the first bit

initialise bit indexes to natural numbers (we need them to keep track of which bit 
we are deciding at each stage) 

bitndx index K( ):=

Here we follow the V-BLAST algorithm by Golden et al, Electronics Letters, 7th Jan 1999, vol. 35, no. 1, pp 
14-15.

2.2  V-BLAST SIC
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bitndx
2

0









=order
0

1









=

bitndx Pv
2〈 〉

:=order Pv
1〈 〉

:=Pv csort augment augment Pv index K 1−( ),( ) bitndx,( ) 0,( ):=

Sort by increasing column norm.  After the sort, column 1 contains permuted column indexes, column 2 
contains permuted bit indexes:

vector of column norms of W Pv diagxtract W
T


W⋅





:=

W G
T

:=G F
T


F⋅






1−

F
T


⋅:=

Select and detect the first bit

We are ready to do it again.  On to stage 2...

F

0.817− 3.223i−

3.663 0.206i+

0.884 4.163i−

2.775− 1.641i−

2.304 1.491i+

1.604− 1.193i−









= bitndx
2

0









=

bitndx submatrix bitndx 1, rows order( ) 1−, 0, 0,( ):=F submatrix F 0, M 1−, 1, cols F( ) 1−,( ):=

and reduce the order:

F

1.138 2.311i−

3.471 0.251i−

3.209− 1.025i+

0.817− 3.223i−

3.663 0.206i+

0.884 4.163i−

2.775− 1.641i−

2.304 1.491i+

1.604− 1.193i−









=

F temp:=temp k〈 〉
F

orderk( )〈 〉
:=k 0 K 1−..:=temp F:=

Reorder the columns

F

2.775− 1.641i−

2.304 1.491i+

1.604− 1.193i−

1.138 2.311i−

3.471 0.251i−

3.209− 1.025i+

0.817− 3.223i−

3.663 0.206i+

0.884 4.163i−









=
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     Recall that the MMSE detector forms

     V-BLAST does not have to use the zero forcing algorithm, as noted in the paper by Golden et al.  Here we 
explore an MMSE variant.  It should be significantly better than ZF V-BLAST when the signal powers are 
different, since the strongest signal, which is likely to be selected for first detection, does not have to squander its 
degrees of freedom on complete suppression of the other users.

MMSE V-BLAST SIC

This algorithm is condensed to a single procedure in Appendix C.

b

1−

1−

1−









=bv

1−

1−

1−









=

Compare decision with transmitted bits:

bv bitndx0( )
b:=b sgn F

T


y⋅




0





:=

The last stage is easy.  No need to form the pseudoinverse, since only one user remaining.  We have

F

2.775− 1.641i−

2.304 1.491i+

1.604− 1.193i−









= bitndx 0( )=

bitndx submatrix bitndx 1, rows order( ) 1−, 0, 0,( ):=F submatrix F 0, M 1−, 1, cols F( ) 1−,( ):=

and reduce the order:

F temp:=temp k〈 〉
F

orderk( )〈 〉
:=k 0 K 2−..:=temp F:=

Reorder the columns

subtract that bit's contributiony y F
order0( )〈 〉

b⋅−:=

Deflate the system by subtracting that bit's contribution to y, then removing the corresponding column of F and 
row of bitndx. 

bv bitndx0( )
b:=save decision b sgn W

order0( )〈 〉T
y⋅





0





:=

The column with index in location 0 of order has minimum norm of weight vector, i.e., min noise, i.e. max 
SNR, so we make a decision on that bit. 
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bhat W
T


y⋅= where W F F

T


F⋅ 2 I⋅+






1−

⋅=

and that the resulting MMSEs, component by component, are

σe
2

diagxtract
1
2

I⋅
1
2

F
T


F⋅ 2 I⋅+






1−

⋅ F
T


⋅ F⋅−








=

Therefore, at each stage, we select for detection the bit with the smallest mean squared error; equivalently with the 
largest component in 

diagxtract F
T


F⋅ 2 I⋅+






1−

F
T


⋅ F⋅




The remaining operations are identical to the ZF V-BLAST above.  A procedure is in Appendix D.

3.  THE FULL SIMULATION

Here we put the three SIC detectors head-to-head in the same environment.  May the best detector win.

MUDfight K M, A, ρ, Nsim,( ) E zeros K 3,( )←

b datavec K( )←

V
1

2
gaussarray M K,( )⋅←

C ρ V⋅
1 ρ

2
−
2

gaussarray M K,( )⋅+←

y C A⋅ b⋅ gaussarray M 1,( )+←

F V A⋅←

bw whitenSIC y F,( )←

E 0〈 〉
E 0〈 〉

errs bw b,( )+←

bv vblast y F,( )←

E 1〈 〉
E 1〈 〉

errs bv b,( )+←

bm vblastmmse y F,( )←

E 2〈 〉
E 2〈 〉

errs bm b,( )+←

n 1 Nsim..∈for

E
Nsim

:=
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trim off the row of zeros results1 submatrix results1 1, rows results1( ) 1−, 0, cols results1( ) 1−,( ):=

results1 curves M Γ0dB, ΛdB, ρ, Nsim,( ):=

ΛdB

0

0

0









=Nsim 500000:=Γ0dB

5

10

15

20

25

















:=

ratio (in dB) of user i power to user 0 powerΛdBk 0:=k 0 K 1−..:=

correlation coefficientρ 1:=users and antennas, resp.M 3:=K 3:=

     Next, we run and save the simulation for BERs at a sequence of SNR values.  This group is for 
equipower users.   It's in the area below that we harvest the results of our work in building the 
simulation.

start all with a row of zeros
to get stacking of results started

curves M Γ0dB, ΛdB, ρ, Nsim,( ) K length ΛdB( )←

all zeros 1 7,( )←

ΓdB Γ0dBi ones K 1,( )⋅ ΛdB+←

A 2 nat ΓdB( )⋅
→

←

A diag A( )←

BERs MUDfight K M, A, ρ, Nsim,( )←

keep augment augment ΓdB K ones K 1,( )⋅,( ) M ones K 1,( )⋅,( )←

keep augment keep Nsim ones K 1,( )⋅,( )←

keep augment keep BERs,( )←

all stack all keep,( )←

i 0 length Γ0dB( ) 1−..∈for

all

:=

And this precedure loops through a sequence of SNR values:

MUDfight K M, A, ρ, 100,( )
0.01

0

0.01

0.01

0.01

0.02

0

0

0









=

A column for each detector: whitening SIC, 
V-BLAST and MMSE V-BLAST.  Row 0 is 
user 0, row 1 is user 1, etc.

Here is one run.  We'll do several of them further below.
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(note different W's)MMSE V-BLASTF
T


W⋅V-BLASTW
T


W⋅

     For an answer, we look more closely at the original (non-SIC) detection by ZF and MMSE.  For each 
realisation of the gains, we can rank the users by the same criteria that we use in the first iteration of BLAST 
(Appendices C, D); that is, by the diagonal elements of  

     These results demand explanation.  Our original results in Section 6.B for linear detection of equipower signals 
showed that the average BER of MMSE was a little better than that of ZF, and they both tracked the single 
diversity MRC curve.  Why would MMSE be so much better than ZF in a SIC regime?

Observations

*  The two algorithms based on ZF 
(whitening and V-BLAST) have diversity 
order one, since they are dominated by the 
error probability of the first user to be 
detected, and that user has diversity order 
one.

*  V-BLAST is a little better than 
whitening, since it makes a more intelligent 
choice of detection order.

*  MMSE V-BLAST is almost 
unbelievably good, in terms of both 
absolute error rate and the effective order 
of diversity over much of its displayed 
range.  Its order of diversity is 
asymptotically one, since MMSE tends to 
ZF when the signals grossly dominate the 
noise.

5 10 15 20 25
1 .10 6

1 .10 5

1 .10 4

1 .10 3

0.01

0.1

whitening SIC
V-BLAST
MMSE V-BLAST
ref: MRC, M=1, K=1
ref: MRC, M=2, K=1
ref: MRC, M=3, K=1

Detection: 3 equipower users, 3 antennas

SNR (dB)

B
E

R

3 BER0 3,⋅ 1.5 106×=Number of trials for each point on the curves:

BER BER
T

:=BER i〈 〉 1
3

temp 3 i⋅〈 〉
temp 3 i⋅ 1+〈 〉

+ temp 3 i⋅ 2+〈 〉
+( )⋅:=

i 0
cols temp( )

3
1−..:=temp temp

T
:=

Average the rows, since equipower, same BER (set up here for K=3).  Transpose, to work with columns.

temp READPRN "equiSIC.txt"( ):=Now, read in the results of a lengthy simulation:

WRITEPRN "equiSIC500.txt"( ) results1:=
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Appendix E contains simulation routines that separate out the error rates, by rank, for ZF and MMSE.  The best 
ranked one is always the first to be selected for detection in BLAST SIC.  

5 10 15 20 25
1 .10 6

1 .10 5

1 .10 4

1 .10 3

0.01

0.1

1

best ranked user
middle ranked user
poorest ranked user
ref: MRC, M=1, K=1
ref: MRC, M=2, K=1
ref: MRC, M=3, K=1

ZF Ranked: M=3, K=3 

SNR (dB)

B
E

R

Observations 

*  The ranking order of users (users 0, 1, 2) 
changes with every realisation of the gains.

*  The average of the three curves is exactly 
the average BER curve for ZF that we saw in 
Section 6.B.

*  In ZF, even the instantaneously best ranked 
user is only a little better than the 2nd and 3rd 
ranked.  They, in turn, are almost as bad as 
diversity order one detection.

*  This explains why ZF V-BLAST is not 
hugely better than the diversity order one 
curve.

Observations 

*  The ranking order of users (users 0, 1, 2) 
changes with every realisation of the gains.

*  The average of the three MMSE curves is 
exactly the average BER curve for MMSE 
that we saw in Section 6.B.

*  In MMSE, the instantaneously best ranked 
user enjoys phenomenally good performance 
(order 3 for lower SNRs) and the 2nd user is 
close to diversity order 2.  MMSE doesn't 
waste degrees of freedom suppressing users 
who are instantaneously at or below the noise 
level.

*  This explains the great performance of 
MMSE V-BLAST.  Since the first user to be 
selected for detection has very low BER, its 
removal and the deflation of the set is likely to 
be correct, providing the remaining users with 
an additional order of diversity.  The same 
argument can be applied to the next stage.

5 10 15 20 25
1 .10 6

1 .10 5

1 .10 4

1 .10 3

0.01

0.1

best ranked user
middle ranked user
poorest ranked user
ref: MRC, M=1, K=1
ref: MRC, M=2, K=1
ref: MRC, M=3, K=1

MMSE Ranked: M=3, K=3 

SNR (dB)

B
E

R
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Observations 

*  Users are labeled strongest, 
middle, weakest by mean square 
power.  This is not always the same 
as instantaneous power, which 
determines detection order.  The 
strongest user is not always the first to 
be detected.

*  The strongest user's performance 
degrades significantly by the presence 
of weaker users.  Unit order of 
diversity, as expected.

*  At any operating point, the weak 
users have poorer BER than the 
strong one - they are plotted here 
against own SNR.

5 0 5 10 15 20 25
1 .10 6

1 .10 5

1 .10 4

1 .10 3

0.01

0.1

1

whitened SIC, strongest
whitened SIC, middle
whitened SIC, weakest
ref: MRC, K=1, M=1
ref: MRC, K=1, M=2
ref: MRC, K=1, M=3

3 users, 3 antennas,  5 dB pwr diffs

users *own* SNR  (dB)

B
E

R

BER0 3, 5 105×=Number of trials:We plot against the user's own SNR.  The first is for whitening SIC.

i 0 3, r 2−..:=r rows BER( ):=BER READPRN "pdiffSIC.txt"( ):=

Read in the results of one or more simulation runs:

WRITEPRN "pdiffSIC500.txt"( ) results2:=

trim off the row of zeros results2 submatrix results2 1, rows results2( ) 1−, 0, cols results2( ) 1−,( ):=

results2 curves M Γ0dB, ΛdB, ρ, Nsim,( ):=

ΛdB

0

5−

10−









:=Nsim 500000:=Γ0dB 5 10 15 20 25( )
T

:=

ratio (in dB) of user i power to user 0 powerΛdB1 10−:=ΛdB0 0:=

users and antennas, resp.M 3:=K 3:=

In this section, we examine the effects of dissimilar power levels among users.  User 1 is a few dB below user 0, 
user 2 a few dB below user 1.

4.  NEAR-FAR EFFECTS
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Next, V-BLAST, again plotted against the user's own SNR.  First, the ZF version, then MMSE V-BLAST.

5 0 5 10 15 20 25
1 .10 6

1 .10 5

1 .10 4

1 .10 3

0.01

0.1

1

V-BLAST, strongest
V-BLAST, middle
V-BLAST, weakest
ref: MRC, K=1, M=1
ref: MRC, K=1, M=2
ref: MRC, K=1, M=3

3 users, 3 antennas,  5 dB pwr diffs

users *own* SNR  (dB)

B
E

R

Observations 

*  Almost identical to whitening, 
because they are both based on ZF.

5 0 5 10 15 20 25
1 .10 6

1 .10 5

1 .10 4

1 .10 3

0.01

0.1

1

MMSE V-BLAST, strongest
MMSE V-BLAST, middle
MMSE V-BLAST, weakest
ref: MRC, K=1, M=1
ref: MRC, K=1, M=2
ref: MRC, K=1, M=3

3 users, 3 antennas,  5 dB pwr diffs

users *own* SNR  (dB)

B
E

R

Observations 

*  All users have diversity order 
between 2 and 3 for the displayed 
range.

*  The weakest user follows the 
diversity 3 curve, just what it would 
have experienced if there were no 
other users.  Decisions on other-user 
bits are almost always correct (they 
are 5 dB and 10 dB stronger).

*  The strongest user experiences 
degradation due to the presence of 
weaker users.  Occasionally, they are 
detected first, but their instantaneous 
quality is unlikely to be much more 
than that of the strongest user, so they 
can adversely affect the BER of the 
strongest user.
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     It is worth noting that greater power disparities (e.g., 2nd user 10 dB lower, 3rd user 20 dB lower than 
s=trongest) cause all users to track the ideal MRC, K=1, M=3 curve.  That is because the weaker users have 
less disturbing influence on the strongest user, who is almost always selected as the first to be detected.

     Conclusions with respect to SIC detection of users with different powers: 

*  The weaker users are not much affected by presence of the stronger users, since the first decisions are likely 
to be correct.  Caveat: this is for perfect channel state information.

*  The stronger users are adversely affected by the presence of the weaker users if the power disparity is 
relatively minor.  For large power disparities, the weaker users are too weak to make much difference to the 
strong user.
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Generate array (Nr x Nc) of variance 1 complex Gaussian

datavec N( ) int_to_bvec floor rnd 2N( )( ) N,( )≡

Generate random data vector

Generate random vectors and arrays

bvec_to_int b( ) sum 0←

sum sum 2i 1− bi 1+( )⋅+←

i 0 rows b( ) 1−..∈for

sum

≡
int_to_bvec n N,( ) i 0←

rem mod n 2,( )←

bi if rem 1= 1, 1−,( )←

n floor
n
2







←

i i 1+←

i N<while

b

≡

Conversions between integers and binary data vectors (of +1,-1)

errs b c,( ) e b c−←

ei if ei 0= 0, 1,( )←

i 0 length e( ) 1−..∈for

e

≡

Hamming error vector

Manipulations of binary data vectors

sgn x( ) if Re x( ) 0≥ 1, 1−,( )≡

nat x( ) 100.1 x⋅≡dB x( ) if x 10 14−> 10 log x( )⋅, 140−,( )≡

larger x y,( ) if x y> x, y,( )≡smaller x y,( ) if x y< x, y,( )≡

Basic definitions and functions

     This appendix contains a simulation to determine the statistics of Hamming error for pure MMSE decisions. 
 It begins with a few "housekeeping" functions that simplify the subsequent simulation.

APPENDIX A:  USEFUL FUNCTIONS
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cgauss x( ) 2− ln rnd 1( )( )⋅ exp j rnd 2 π⋅( )⋅( )⋅≡ unit variance complex Gaussian

gaussarray Nr Nc,( )

Air ic, cgauss ir( )←

ic 0 Nc 1−..∈for

ir 0 Nr 1−..∈for

A

≡

Array manipulations

Make an all-zeros array Make an all-ones array

zeros Nr Nc,( )

Air ic, 0←

ic 0 Nc 1−..∈for

ir 0 Nr 1−..∈for

A

≡ ones Nr Nc,( )

Air ic, 1←

ic 0 Nc 1−..∈for

ir 0 Nr 1−..∈for

A

≡

find smallest/largest in an array; return the value and its index:

smallest x( ) small 1015←

small xi←

i_small i←

xi small<if

i 0 rows x( ) 1−..∈for

small i_small( )
T

≡ largest x( ) large 1015−←

large xi←

i_large i←

xi large>if

i 0 rows x( ) 1−..∈for

large i_large( )
T

≡

vector containing its own indexes (for sort algorithms) extract the diagonal of a square matrix, return as 
vector

index N( )

indn n←

n 0 N 1−..∈for

ind

≡ diagxtract X( )

di Xi i,←

i 0 cols X( ) 1−..∈for

d

≡
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Gram-Schmidt orthogonalisation.  Performs G-S on the vectors comprising the columns of C.  The orthonormal 
set forms the columns of Φ and the corresponding coefficients are in the upper triangular U, so that C=ΦU.  The 
arrays U and Φ are returned, stacked.

GS C( ) K cols C( )←

U0 0, C 0〈 〉
←

Φ 0〈 〉 C 0〈 〉

U0 0,
←

Ui k, Φ i〈 〉T







C k〈 〉
⋅


0←

i 0 k 1−..∈for

e C k〈 〉

0

k 1−

i

Ui k, Φ i〈 〉
⋅∑

=

−←

Uk k, e←

Φ k〈 〉 e
Uk k,

←

k 1 K 1−..∈for

stack U Φ,( )

≡
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APPENDIX B:  THE WHITENING SIC PROCEDURE

The steps of the whitening SIC algorithm from Section 2 are here condensed into a single procedure.

whitenSIC y F,( ) K cols F( )←

Pk F
T


F⋅




k k,←

k 0 K 1−..∈for

P csort augment P index K( ),( ) 0,( )←

order P 1〈 〉
←

temp k〈 〉
F

orderk( )〈 〉
←

k 0 K 1−..∈for

F' temp←

orth GS F'( )←

L submatrix orth 0, K 1−, 0, K 1−,( )
T


←

z L 1− F'
T


⋅ y⋅←

T L 1− F'
T


⋅ F'⋅←

b'K 1− sgn
zK 1−

TK 1− K 1−,









←

b'j sgn

zj

j 1+

K 1−

i

Tj i, b'i⋅∑
=

−

Tj j,













←

j K 2− 0..∈for

bworderk
b'k←

k 0 K 1−..∈for

bw

≡

sort signals by increasing power; 
column 1 of P holds the ordering

reorder columns of F to form F'

Cholesky factorise the Gram matrix 
by doing Gram-Schmidt on 
columns of F'.  Lower triangular L. 

sufficient statistics z

and upper triangular T

SIC starts with highest indexed 
data bit

and moves down to bit 0

restore the order of decisions
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APPENDIX C:  THE V-BLAST ALGORITHM

This procedure condenses the operations in Section 2.

vblast y F,( ) K cols F( )←

M rows F( )←

bitndx index K( )←

W F F
T


F⋅






1−

⋅←

Pv diagxtract W
T


W⋅





←

Pv csort augment augment Pv index K k−( ),( ) bitndx,( ) 0,( )←

order Pv
1〈 〉

←

bitndx Pv
2〈 〉

←

b sgn W
order0( )〈 〉T


y⋅




0







←

bv bitndx0( )
b←

y y F
order0( )〈 〉

b⋅−←

temp F←

temp i〈 〉
F

orderi( )〈 〉
←

i 0 K k− 1−..∈for

F temp←

F submatrix F 0, M 1−, 1, cols F( ) 1−,( )←

bitndx submatrix bitndx 1, rows bitndx( ) 1−, 0, 0,( )←

k 0 K 2−..∈for

bv bitndx0( )
sgn F

T


y⋅




0





←

bv

≡
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APPENDIX D:  THE MMSE V-BLAST ALGORITHM

This procedure is like standard VBLAST, but uses MMSE, instead of ZF, and selects the bit on the basis of 
minimum mean squared error.  Equivalently, maximises mean sq value of the estimate of the data bit.

vblastmmse y F,( ) K cols F( )←

M rows F( )←

bitndx index K( )←

W F F
T


F⋅ 2 identity K k−( )+






1−

⋅←

Pv diagxtract F
T


W⋅




−←

Pv csort augment augment Pv index K k−( ),( ) bitndx,( ) 0,( )←

order Pv
1〈 〉

←

bitndx Pv
2〈 〉

←

b sgn W
order0( )〈 〉T


y⋅




0







←

bv bitndx0( )
b←

y y F
order0( )〈 〉

b⋅−←

temp F←

temp i〈 〉
F

orderi( )〈 〉
←

i 0 K k− 1−..∈for

F temp←

F submatrix F 0, M 1−, 1, cols F( ) 1−,( )←

bitndx submatrix bitndx 1, rows bitndx( ) 1−, 0, 0,( )←

k 0 K 2−..∈for

bv bitndx0( )
sgn F

T


y⋅




0





←

bv

≡
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APPENDIX E: DECISIONS ORDERED BY INSTANTANEOUS BEST TO WORST USER  

ZFranked y F, b,( ) K cols F( )←

M rows F( )←

bitndx index K( )←

W F F
T


F⋅






1−

⋅←

Pv diagxtract W
T


W⋅





←

Pv csort augment Pv bitndx,( ) 0,( )←

order Pv
1〈 〉

←

decn W
T


y⋅←

decn sgn decn( )
→

←

etemp errs decn b,( )←

ei etemp orderi( )←

i 0 K 1−..∈for

e



















































≡

Returns a vector of decision 
errors for pure ZF, but ranked, so 
that the first (row 0) is for the 
users with the best weight vector, 
etc.  The average of the three 
error rates is the BER of all users 
in ZF, irrespective of ranking.

MMSEranked y F, b,( ) K cols F( )←

M rows F( )←

bitndx index K( )←

W F F
T


F⋅ 2 identity K( )+






1−

⋅←

Pv diagxtract F
T


W⋅




−←

Pv csort augment Pv bitndx,( ) 0,( )←

order Pv
1〈 〉

←

decn W
T


y⋅←

decn sgn decn( )
→

←

etemp errs decn b,( )←

ei etemp orderi( )←

i 0 K 1−..∈for

e

≡

Returns a vector of decision 
errors for pure MMSE, but 
ranked, so that the first (row 0) is 
for the users with the best weight 
vector, etc.  The average of the 
three error rates is the BER of all 
users in ZF, irrespective of 
ranking.
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MUDrank K M, A, ρ, Nsim,( ) E zeros K 2,( )←

b datavec K( )←

V
1

2
gaussarray M K,( )⋅←

C ρ V⋅
1 ρ

2
−
2

gaussarray M K,( )⋅+←

y C A⋅ b⋅ gaussarray M 1,( )+←

F V A⋅←

E 0〈 〉
E 0〈 〉

ZFranked y F, b,( )+←

E 1〈 〉
E 1〈 〉

MMSEranked y F, b,( )+←

n 1 Nsim..∈for

E
Nsim

≡

simulation run to 
get the BERs 
ranked by 
instantaneous 
weight vector, best 
to worst.

Traces out the curves.

ranker M Γ0dB, ΛdB, ρ, Nsim,( ) K length ΛdB( )←

all zeros 1 6,( )←

ΓdB Γ0dBi ones K 1,( )⋅ ΛdB+←

A 2 nat ΓdB( )⋅
→

←

A diag A( )←

BERs MUDrank K M, A, ρ, Nsim,( )←

keep augment augment ΓdB K ones K 1,( )⋅,( ) M ones K 1,( )⋅,( )←

keep augment keep Nsim ones K 1,( )⋅,( )←

keep augment keep BERs,( )←

all stack all keep,( )←

i 0 length Γ0dB( ) 1−..∈for

all

≡


