
x t( ) xr t( ) j xi t( )⋅+=
1
2

u t( )⋅ v t( )


⋅=

Combining the two lowpass outputs into a "conceptual" complex signal, we have

xi t( )
1
2

Re j− u t( )⋅ v t( )


⋅( )⋅=
1
2

Im u t( ) v t( )


⋅( )⋅=

Following through as above, but with w(t), instead of v(t), we get

w t( ) j v t( )⋅=with complex envelopew' t( ) Re j v t( )⋅ e
j 2⋅ π⋅ fc⋅ t⋅

⋅




=

For the other component, denote the output of the 90 degree phase advance as

xr t( )
1
2

Re u t( ) v t( )


⋅( )⋅=

where the overhead bar denotes complex conjugate.  Therefore, after the lowpass,

u' t( ) v' t( )⋅
1
2

Re u t( ) v t( )


⋅ u t( ) v t( )⋅ e
j 4⋅ π⋅ fc⋅ t⋅

⋅+




⋅=

The output of the upper multiplier, from the identity, is

v' t( ) Re v t( ) e
j 2⋅ π⋅ fc⋅ t⋅

⋅




=u' t( ) Re u t( ) e

j 2⋅ π⋅ fc⋅ t⋅
⋅





=

(a)  I'll use a prime ( ' ) to denote real bandpass signals, since Mathcad has no tilde.  We have
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p2 t τ1−( ) p2 t T−( ) p2 t T− τ1−( ) ........... p2 t M 1−( ) T⋅− τ1− 

.... .... .... .... ....

pK t( ) pK t τ1−( ) pK t T−( ) pK t T− τ1−( ) ........... pK t M 1−( ) T⋅− τ1− 

or any scalar multiple of them (for example, some of you used the set {h0,kpk(t-mT), 
h1,kpk(t-mT-τk); k=1..K, m=0..M-1}).   Therefore, correlation against this set of waveforms will 
give you sufficient statistics; that is, you do not need any more information from the received signal 
in order to make your decisions on the MK bits.  Of course, what you do with the correlation 
values after obtaining them is an interesting question, and one that we will spend much of the 
course addressing.

One very important point: the data symbols bk(n) are not part of the basis.  They are in the 
coefficients that multiply the basis functions, because they are variable.

     A more compact set can be obtained by noting that each user's received waveform consists of 
translates of  

As for the output of the integrators, the conceptual complex signal is

y t( ) yr t( ) j yi t( )⋅+=
∞−

t

αx t( )
⌠

⌡

d=
∞−

t

αu α( ) v α( )
⋅

⌠

⌡

d=

The structure calculates the correlation (inner product) of the two complex envelopes.  In fact, the 
integrator acts as a lowpass itself, so you can combine it with the lowpass, if you want.

(b)  We write the LO output in complex envelope form as

v' t( ) Re ej 2 π⋅ ∆f⋅ t⋅ φ+( )⋅ e
j 2⋅ π⋅ fc⋅ t⋅

⋅




= so that v t( ) ej 2 π⋅ ∆f⋅ t⋅ φ+( )⋅=

Substitution into the results from (a) gives

x t( )
1
2

u t( )⋅ e j− 2 π⋅ ∆f⋅ t⋅ φ+( )⋅⋅=

which makes the frequency and phase shift explicit.

2.  CDMA in Delay Spread

(a)  The easiest way to get sufficient statistics is to observe that the signal space is spanned by the 
2MK waveforms

p1 t( ) p1 t τ1−( ) p1 t T−( ) p1 t T− τ1−( ) ........... p1 t M 1−( ) T⋅− τ1− 

p2 t( )

2



(b)  If you were interested only in user 1, you would certainly need all the correlations against that 
user's pulse.  You might also be tempted to discard the correlations against other pulses (after all, 
that is what the conventional CDMA detector does).  Unless the waveforms are orthogonal, 
however, you would lose information; what you pick up from the user-k correlation also contains 
components from the other-user pulses even if those contributions are small.  Thus the vector of all 
correlations contains information about all symbols and, in principle, you should use the vector to 
make a collective decision on all symbols.  Untangling the interactions is one of the central 
problems of multiuser detection.

for symbol m of user k. Again, what you do with the correlation values is the next question.

h0 k, pk t m T⋅−( )⋅ h1 k, pk t m T⋅− τk−( )⋅+

Therefore, if the receiver has the channel coefficients available at this stage, it can correlate against 
the basis waveform

0

M 1−

m 1

K

k

bk m( ) h0 k, pk t m T⋅−( )⋅ h1 k, pk t m T⋅− τk−( )⋅+( )⋅∑
=

∑
=

Again, the data symbols act as the coefficients, so that the received waveform, in the absence of 
noise, is

h0 K, pK t M 1−( ) T⋅−[ ]⋅ h1 K, pK t M 1−( ) T⋅− τK− ⋅+........

.....h0 K, pK t( )⋅ h1 K, pK t τK−( )⋅+

................

h0 1, p1 t M 1−( ) T⋅−[ ]⋅ h1 1, p1 t M 1−( ) T⋅− τ1− ⋅+........

.....h0 1, p1 t( )⋅ h1 1, p1 t τ1−( )⋅+

The received signal therefore occupies a subspace of the one just described, and is spanned by 
the MK waveforms 

h0 k, pk t( )⋅ h1 k, pk t τk−( )⋅+
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3.  Other-Cell Interference

(a)  The power received by base k and the power transmitted by its mobile are related by

Pr k, K
Pt k, 10

sk

10⋅

rk( )4
⋅= k 1= 2..

where exp10(sk/10) is the log-normally distributed shadowing gain, in which sk is normal 
(Gaussian) with mean 0 and standard deviation σs dB, and K is the proportionality coefficient.

     With power control, the base makes its received power constant at P0.  Inverting the above 
equation, we then have the transmitted power as

Pt k, K 1− P0⋅ rk( )4⋅ 10

sk

10
−

⋅= k 1= 2..

(b)  For the SIR at base station 1, we first calculate the interference power.  It is the power 
transmitted by mobile 2, affected by path loss and shadowing on the way to base station 1.  Write 
it as

I2 1, K Pt 2,⋅
10

s2 1,

10

r2 1,( )4
⋅= P0

r2
r2 1,









4

⋅ 10

s2 1, s2−

10⋅=

where s2,1 is the random dB change due to shadowing en route to base 1.  Since power control 
by base 1 keeps it receiving its own mobile with power P0, the SIR is 

Λ1
P0

I2 1,
=

r2 1,

r2









4

10

s2 s2 1,−

10⋅=

     The SIR doesn't depend on K or P0.  It improves quickly with increasing distance ratio r2,1/r2 
(which is the point of separating cochannel cells).  The dB change due to shadowing ∆s=s2-s2,1 is 
the difference of independent normal random variables defined above, so it also normal, with mean 
0 dB and standard deviation σ∆s=sqrt(2)σs (the variances add).  The pdf of Λ1 is therefore 
log-normal.  To get an expression for it, we start with the pdf of ∆s, given by

4



p∆s ∆s( ) 1

2 π⋅ σs⋅
exp

1
4

−
∆s

σs









2
⋅







⋅=

Now for the change of variables.  We have

Λ1
r2 1,

r2









4

exp
ln 10( )

10
∆s⋅





⋅= ∆s
10

ln 10( )
ln

r2
r2 1,









4

Λ1⋅








⋅=

Logarithm is monotonic, which simplifies things, but don't forget the Jacobian.  We have

d∆s
10

ln 10( )

dΛ1

Λ1
⋅=

Therefore 

pΛ1 Λ1( ) 1

2 π⋅ 0.1⋅ ln 10( )⋅ 2⋅ σs⋅ Λ1⋅
exp

1−
2

ln Λ1( ) ln
r2 1,

r2









−

0.1 ln 10( )⋅ 2⋅ σs⋅













2

⋅













⋅=

Messy, but at least it's clearly lognormal.

(c)  If there were two or more interferers, we would have the total interference at antenna 1 as

I1 I2 1, I3 1,+= IN 1,..

Each of the interferers has a log-normal pdf, as derived above.  They are independent, so the pdf 
of I1 is the convolution of the N log-normal pdfs.  Ugh!  No closed form.  Often, though, we can 
approximate the sum as another log-normal pdf, if we pick the two parameters (the moments) 
carefully.  One well-known approximation, Wilkinson's method, equates the first two moments of 
the left and right sides.
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