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1.  SNR Calculations

(a)  We know that complex envelope power and bandpass power are related by a factor of 1/2, 
so the energies over one symbol duration T have the same relationship.  This gives us
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where I have taken the interval [0,T] as representative, and the expectation is over the data 
ensemble.  Substituting for the complex envelope, we have
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Bring the expectation inside the integral and summations, then use the fact that the data symbols 
are independent and have unit amplitude, so E b k( ) b i( )


⋅( ) δ i k,= .  The result is
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From this, A 2 Eb⋅=
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and the sample at t=kT is
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(c)  If the channel gain c=1, then the signal component at the matched filter output is

ry k( ) No δ k 0,⋅=and Rp k T⋅( ) δ k 0,=

A common special case: Nyquist pulses, samples spaced by the symbol time T.  Then
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and the autocorrelation function of the samples (which I'll denote with lower case r to distinguish it 
from continuous time) is

since the pulse has unit energyσν
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Now, back to the original question.  The variance of the noise in the matched filter output is 
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We could equally well work in the time domain, using .  Then 
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which makes the autocorrelation function
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(b)  Consider the noise component at the output of the matched filter, before sampling.  The 
situation is just complex white noise into a linear filter, so all we need is the autocorrelation function 
of the filter output.  The filter can be described by
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This is an awkward sort of result.  It illustrates the fact that the factor of 1/2 applies to both signals 
(s(t) and g(t)) together, not individually, when we calculate power at the receiver.  You get used to it 
after a while, but it is always a nuisance.
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(e)  If the gain is random, we return to the question of signal variance, this time with r(t), instead of 
y(t).  We have the variance of the signal component as
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y k T⋅( ) A g k T⋅( )⋅

i

b i( ) Rp k i−( ) T⋅[ ]⋅∑⋅ ν k T⋅( )+=
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Examine the integrand.  If g(α) varies slowly compared with the other two factors, then we can 
approximate the integral as
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(d)  From part (c) and the expression for the received signal, we have 
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Finally, the ratio of signal variance to noise variance (signal power to noise power is)
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which is periodic in t.  Since the pulses have unit energy, the received energy across a symbol time is 
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where expectation is across the channel and data ensembles.  Because the path gains are uncorrelated 
and zero-mean, we have 
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Its expected instantaneous power is
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     We have the received signal as

(g)  The frequency-selective fading link is shown below.
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(f)  If the conditions of (d) and (e) hold, then the signal to noise ratio in the MF output samples is
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which gives the average received power as
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If we want the transmitted and received powers, or energies per symbol, to be the same, then set
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To generalise a little, if the channel has a continuous impulse response, instead of discrete arrivals, then
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where P
g
(τ) is the power delay profile (the continuous version of σ i

2
 vs. τ

i
).

2.  Coherent and Incoherent Detection

In this system, we have y k T⋅( ) 2 Eb⋅ g k T⋅( )⋅ b k( )⋅ n k T⋅( )+=

and v k T⋅( ) g k T⋅( ) e k T⋅( )+=
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We have the numerator as
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     Now get the other correlation coefficient

where we denote the reference SNR by Γe.  
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From this,
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(a)  Correlation coefficients are the key to detector performance.  Start with  
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(d)  The BER for coherent detection is obtained by letting the reference SNR go to infinity 
(equivalently, letting ρ=1) in the result from part (c).  We get 

Note the error floor as Γb becomes infinite: Pe => 0.5(1-ρ), so good estimates are important.
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From the expression for α in part (a), with b(k)=1,   
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(c)  To get the BER, assume that b(k)=1, so that an error is made if q(k)<0.  From the last page of 
Section 4.1 in the notes, we have the probability that the decision variable is negative as
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(b)  The decision variable is
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     The next step is to observe that q is equivalent to a real binary decision system with additive 
Gaussian noise.  If b=1, the probability is error is just what you learned in your first course in 
communications
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so that the variance of its real and imaginary parts separately are also No.  When conditioned on g, the 
product n g


⋅   remains Gaussian.  The phase of g doesn't matter, because n already has uniformly 

distributed phase, so the only discernible effect is that the variance is scaled by |g|2.  Thus
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(e)  In coherent detection, we have

As noted in the question sheet, these are well-known expressions.
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so that the result from part (c) becomes
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For differential detection, where we use the previous pulse as our reference, it is easy to show that the 
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We recognise the integral as one side of the Gaussian pdf, but it is missing the standard deviation scale 
factor.  Rewrite as
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From these, we obtain
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You can see the Rayleigh pdf of w here.Pe_av
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With the definition of Q, this is clearly a case for integration by parts.  Unfortunately, working with x 
directly is a challenge.  At some point, you have to make a change of variables to w=sqrt(x), and this 
is equivalent to working with the Rayleigh distributed w=|g|, instead of x=|g|2.  I should have flagged 
this more clearly in the question statement.  In any case, after making the change, we have
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Now we "merely" have to evaluate
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so we need the pdf px x( ).  We have already seen in the notes that z has an exponential distribution, 

and its mean is 
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     The average error rate is just the expectation over the squared magnitude of the gain
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which simplifies to
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This is the same expression we obtained through use of quadratic forms.

A final note on Problem 2 - it is not usual for the estimation error variance σe
2
 to be independent of 

SNR.  Normally, the channel estimation procedure is affected by the additive noise, so that increasing 
SNR also decreases the estimation error.
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