UNIVERSITY OF CANTERBURY
 Dept. of Electrical and Computer Engineering

ENEL 673
Solutions to Assignment 2
April, 2002

1. SNR Calculations

(a) We know that complex envelope power and bandpass power are related by a factor of $1 / 2$, so the energies over one symbol duration T have the same relationship. This gives us

$$
\mathrm{E}_{\mathrm{b}}=\frac{1}{2} \cdot \mathrm{E}\left[\int_{0}^{\mathrm{T}}(|\mathrm{~s}(\mathrm{t})|)^{2} \mathrm{dt}\right]
$$

where I have taken the interval $[0, T]$ as representative, and the expectation is over the data ensemble. Substituting for the complex envelope, we have

$$
\left.\begin{array}{rl}
\mathrm{E}_{\mathrm{b}} & =\frac{1}{2} \cdot \mathrm{~A}^{2} \cdot \mathrm{E}\left[\int_{0}^{\mathrm{T}}\left(\left|\sum_{\mathrm{k}} \mathrm{~b}(\mathrm{k}) \cdot \mathrm{p}(\mathrm{t}-\mathrm{k} \cdot \mathrm{~T})\right|\right)^{2} \mathrm{dt}\right] \\
\mathbf{I} & =\frac{1}{2} \cdot \mathrm{~A}^{2} \cdot \mathrm{E}\left(\int_{0}^{\mathrm{T}} \sum_{\mathrm{k}} \sum_{\mathrm{i}} \mathrm{~b}(\mathrm{k}) \cdot \overline{\mathrm{b}(\mathrm{i})} \cdot \mathrm{p}(\mathrm{t}-\mathrm{k} \cdot \mathrm{~T}) \cdot \overline{\mathrm{p}(\mathrm{t}-\mathrm{i} \cdot \mathrm{~T})} \mathrm{dt}\right.
\end{array}\right)
$$

Bring the expectation inside the integral and summations, then use the fact that the data symbols are independent and have unit amplitude, so $\mathrm{E}(\mathrm{b}(\mathrm{k}) \cdot \overline{\mathrm{b}(\mathrm{i})})=\delta_{\mathrm{i}, \mathrm{k}}$. The result is

$$
\mathrm{E}_{\mathrm{b}}=\frac{1}{2} \cdot \mathrm{~A}^{2} \cdot \int_{0}^{\mathrm{T}} \sum_{\mathrm{k}}(|\mathrm{p}(\mathrm{t}-\mathrm{k} \cdot \mathrm{~T})|)^{2} \mathrm{dt}=\frac{1}{2} \cdot \mathrm{~A}^{2} \cdot \sum_{\mathrm{k}} \int_{0}^{\mathrm{T}}(|\mathrm{p}(\mathrm{t}-\mathrm{k} \cdot \mathrm{~T})|)^{2} \mathrm{dt}=\frac{1}{2} \cdot \mathrm{~A}^{2}
$$

From this,

$$
\mathrm{A}=\sqrt{2 \cdot \mathrm{E}_{\mathrm{b}}}
$$

(b) Consider the noise component at the output of the matched filter, before sampling. The situation is just complex white noise into a linear filter, so all we need is the autocorrelation function of the filter output. The filter can be described by

$$
\mathrm{h}(\mathrm{t})=\overline{\mathrm{p}(-\mathrm{t})} \quad \mathrm{H}(\mathrm{f})=\overline{\mathrm{P}(\mathrm{f})}
$$

The power spectrum at the output is $\quad \mathrm{S}_{\mathrm{y}}(\mathrm{f})=\mathrm{N}_{\mathrm{o}} \cdot(|\mathrm{H}(\mathrm{f})|)^{2}=\mathrm{N}_{\mathrm{o}} \cdot(|\mathrm{P}(\mathrm{f})|)^{2}$
which makes the autocorrelation function

$$
R_{y}(\tau)=N_{o} \cdot R_{p}(\tau) \quad \text { where } \quad R_{p}(\tau)=\int_{-\infty}^{\infty} p(t) \cdot \overline{p(t-\tau)} d t
$$

We could equally well work in the time domain, using. Then

$$
\begin{aligned}
\mathrm{R}_{\mathrm{y}}(\tau) & =\mathrm{E}(\mathrm{y}(\mathrm{t}) \cdot \overline{\mathrm{y}(\mathrm{t}-\tau)})=\mathrm{E}\left(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathrm{h}(\alpha) \cdot \mathrm{n}(\mathrm{t}-\alpha) \cdot \overline{\mathrm{h}(\beta)} \cdot \overline{\mathrm{n}(\mathrm{t}-\tau-\beta)} \mathrm{d} \alpha \mathrm{~d} \beta\right. \\
\mathbf{I} & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathrm{h}(\alpha) \cdot \overline{\mathrm{h}(\beta)} \cdot \mathrm{N}_{\mathrm{o}} \cdot \delta(\tau+\beta-\alpha) \mathrm{d} \alpha \mathrm{~d} \beta=\mathrm{N}_{\mathrm{o}} \cdot \int_{-\infty}^{\infty} \mathrm{h}(\alpha) \cdot \overline{\mathrm{h}(\alpha-\tau)} \mathrm{d} \alpha \\
\boldsymbol{I} & =\mathrm{N}_{\mathrm{O}} \cdot \mathrm{R}_{\mathrm{p}}(\tau)
\end{aligned}
$$

Now, back to the original question. The variance of the noise in the matched filter output is

$$
\sigma_{v}^{2}=R_{y}(0)=\mathrm{N}_{\mathrm{o}} \cdot \mathrm{R}_{\mathrm{p}}(0)=\mathrm{N}_{\mathrm{o}} \quad \text { since the pulse has unit energy }
$$

and the autocorrelation function of the samples (which I'll denote with lower case r to distinguish it from continuous time) is

$$
r_{y}(k)=R_{y}(k \cdot T)=N_{o} \cdot R_{p}(k \cdot T)
$$

A common special case: Nyquist pulses, samples spaced by the symbol time T. Then

$$
\mathrm{R}_{\mathrm{p}}(\mathrm{k} \cdot \mathrm{~T})=\delta_{\mathrm{k}, 0} \quad \text { and } \quad \mathrm{r}_{\mathrm{y}}(\mathrm{k})=\mathrm{N}_{\mathrm{o}} \cdot \delta_{\mathrm{k}, 0}
$$

(c) If the channel gain $\mathrm{c}=1$, then the signal component at the matched filter output is

$$
\mathrm{y}(\mathrm{t})=\int_{-\infty}^{\infty} \mathrm{s}(\alpha) \cdot \mathrm{h}(\mathrm{t}-\alpha) \mathrm{d} \alpha=\int_{-\infty}^{\infty} \mathrm{s}(\alpha) \cdot \overline{\mathrm{p}(\alpha-\mathrm{t})} \mathrm{d} \alpha=\mathrm{A} \cdot \sum_{\mathrm{i}} \mathrm{~b}(\mathrm{i}) \cdot \mathrm{R}_{\mathrm{p}}(\mathrm{t}-\mathrm{i} \cdot \mathrm{~T})
$$

and the sample at $\mathrm{t}=\mathrm{kT}$ is

$$
\mathrm{y}(\mathrm{k} \cdot \mathrm{~T})=\mathrm{A} \cdot \sum_{\mathrm{i}} \mathrm{~b}(\mathrm{i}) \cdot \mathrm{R}_{\mathrm{p}}[(\mathrm{k}-\mathrm{i}) \cdot \mathrm{T}] \quad \text { and if Nyquist pulses } \quad \mathrm{y}(\mathrm{k} \cdot \mathrm{~T})=\mathrm{A} \cdot \mathrm{~b}(\mathrm{k})
$$

The variance of the signal component is $\frac{1}{2} \cdot E\left[(|y(k \cdot T)|)^{2}\right]=\frac{A^{2}}{2}=E_{b}$

Finally, the ratio of signal variance to noise variance (signal power to noise power is)

$$
\Gamma=\frac{\mathrm{A}^{2}}{2} \cdot \frac{1}{\mathrm{~N}_{\mathrm{o}}}=\frac{\mathrm{E}_{\mathrm{b}}}{\mathrm{~N}_{\mathrm{o}}} \quad \text { and for constellations higher than binary } \quad \Gamma=\frac{\mathrm{E}_{\mathrm{S}}}{\mathrm{~N}_{\mathrm{o}}}
$$

(d) From part (c) and the expression for the received signal, we have

$$
y(k \cdot T)=\int_{-\infty}^{\infty} r(\alpha) \cdot \overline{p(\alpha-k \cdot T)} d \alpha=A \cdot \sum_{i} b(i) \cdot \int_{-\infty}^{\infty} g(\alpha) \cdot p(\alpha) \cdot \overline{p(\alpha-k \cdot T)} d \alpha+v(k \cdot T)
$$

Examine the integrand. If $g(\alpha)$ varies slowly compared with the other two factors, then we can approximate the integral as

$$
g(k \cdot T) \cdot \int_{-\infty}^{\infty} p(\alpha) \cdot \overline{p(\alpha-k \cdot T)} d \alpha=g(k \cdot T) \cdot R_{p}(k \cdot T)
$$

This gives

$$
\mathrm{y}(\mathrm{k} \cdot \mathrm{~T})=\mathrm{A} \cdot \mathrm{~g}(\mathrm{k} \cdot \mathrm{~T}) \cdot \sum_{\mathrm{i}} \mathrm{~b}(\mathrm{i}) \cdot \mathrm{R}_{\mathrm{p}}[(\mathrm{k}-\mathrm{i}) \cdot \mathrm{T}]+\mathrm{v}(\mathrm{k} \cdot \mathrm{~T})
$$

and with Nyquist pulses, $\quad \mathrm{y}(\mathrm{k} \cdot \mathrm{T})=\mathrm{A} \cdot \mathrm{g}(\mathrm{k} \cdot \mathrm{T}) \cdot \mathrm{b}(\mathrm{k})+\mathrm{v}(\mathrm{k} \cdot \mathrm{T})$
(e) If the gain is random, we return to the question of signal variance, this time with $r(t)$, instead of $y(t)$. We have the variance of the signal component as

$$
\frac{1}{2} \cdot \mathrm{E}\left[(|\mathrm{~g}(\mathrm{t}) \cdot \mathrm{s}(\mathrm{t})|)^{2}\right]=\sigma_{\mathrm{s}}^{2} \cdot \mathrm{E}\left[(|\mathrm{~g}(\mathrm{t})|)^{2}\right]
$$

Therefore, to keep the signal power unchanged, we need $\quad \frac{1}{2} \cdot E\left[(|g(t)|)^{2}\right]=\frac{1}{2}$
If g is zero mean, this quantity is the variance, and $\sigma_{g}^{2}=\frac{1}{2}$
This is an awkward sort of result. It illustrates the fact that the factor of $1 / 2$ applies to both signals $(s(t)$ and $g(t))$ together, not individually, when we calculate power at the receiver. You get used to it after a while, but it is always a nuisance.
(f) If the conditions of (d) and (e) hold, then the signal to noise ratio in the MF output samples is signal: $\quad \frac{1}{2} \cdot \mathrm{E}\left[(|\mathrm{y}(\mathrm{k} \cdot \mathrm{T})|)^{2}\right]=\frac{1}{2} \cdot \mathrm{E}\left[(|\mathrm{A} \cdot \mathrm{g}(\mathrm{k} \cdot \mathrm{T}) \cdot \mathrm{b}(\mathrm{k})|)^{2}\right]=\mathrm{A}^{2} \cdot \sigma_{\mathrm{g}}{ }^{2}=\mathrm{E}_{\mathrm{S}}$ noise: $\quad \mathrm{N}_{\mathrm{O}}$
ratio: $\quad \Gamma=\frac{\mathrm{E}_{\mathrm{S}}}{\mathrm{N}_{\mathrm{o}}}$
(g) The frequency-selective fading link is shown below.

We have the received signal as

$$
\mathrm{r}(\mathrm{t})=\sum_{\mathrm{i}=0}^{\mathrm{L}-1} \mathrm{~g}_{\mathrm{i}}(\mathrm{t}) \cdot \mathrm{s}\left(\mathrm{t}-\tau_{\mathrm{i}}\right)
$$

Its expected instantaneous power is

$$
P_{r}(t)=\frac{1}{2} \cdot E\left[(|r(t)|)^{2}\right]=\frac{1}{2} \cdot E\left(\sum_{i=0}^{L-1} \sum_{k=0}^{L-1} g_{i}(t) \cdot \overline{g_{k}(t)} \cdot s\left(t-\tau_{i}\right) \cdot \overline{s\left(t-\tau_{k}\right)}\right)
$$

where expectation is across the channel and data ensembles. Because the path gains are uncorrelated and zero-mean, we have

$$
\begin{aligned}
P_{r}(t) & =\sum_{i=0}^{L-1} \sigma_{i}^{2} \cdot E\left[\left(\left|s\left(t-\tau_{i}\right)\right|\right)^{2}\right] \quad \text { where } \sigma_{i}^{2} \text { is the variance of } g_{i}(t) \\
\mathbf{I} & =\sum_{i=0}^{L-1} \sigma_{i}^{2} \cdot\left(A^{2} \cdot \sum_{j} \sum_{k} E(b(j) \cdot \overline{b(k)}) \cdot p\left(t-j \cdot T-\tau_{i}\right) \overline{p\left(t-k \cdot T-\tau_{i}\right)}\right) \\
& =A^{2} \cdot \sum_{i=0}^{L-1} \sum_{j} \sigma_{i}^{2} \cdot\left(\left|p\left(t-j \cdot T-\tau_{i}\right)\right|\right)^{2}
\end{aligned}
$$

which is periodic in t. Since the pulses have unit energy, the received energy across a symbol time is

$$
E_{S}=\int_{0}^{T} P_{r}(t) d t=A^{2} \cdot \sum_{i=0}^{L-1} \sigma_{i}^{2} \cdot \int_{0}^{T} \sum_{j}\left(\left|p\left(t-j \cdot T-\tau_{i}\right)\right|\right)^{2} d T=A^{2} \cdot \sum_{i=0}^{L-1} \sigma_{i}^{2}
$$

or

$$
\mathrm{E}_{\mathrm{s}}=2 \cdot \mathrm{E}_{\mathrm{b}} \cdot \sum_{\mathrm{i}=0}^{\mathrm{L}-1} \sigma_{\mathrm{i}}^{2}
$$

which gives the average received power as

$$
P_{r_{-} a v}=\frac{E_{S}}{T}=\frac{A^{2}}{T} \cdot \sum_{i=0}^{L-1} \sigma_{i}^{2}=\frac{2 \cdot E_{S}}{T} \cdot \sum_{i=0}^{L-1} \sigma_{i}^{2}
$$

If we want the transmitted and received powers, or energies per symbol, to be the same, then set

$$
\sum_{i=0}^{L-1} \sigma_{i}^{2}=\frac{1}{2}
$$

To generalise a little, if the channel has a continuous impulse response, instead of discrete arrivals, then

$$
\int_{0}^{\tau_{\max }} \mathrm{P}_{\mathrm{g}}(\tau) \mathrm{d} \tau=\frac{1}{2}
$$

where $P_{g}(\tau)$ is the power delay profile (the continuous version of σ_{i}^{2} vs. τ_{i}).

2. Coherent and Incoherent Detection

In this system, we have $\mathrm{y}(\mathrm{k} \cdot \mathrm{T})=\sqrt{2 \cdot \mathrm{E}_{\mathrm{b}}} \cdot \mathrm{g}(\mathrm{k} \cdot \mathrm{T}) \cdot \mathrm{b}(\mathrm{k})+\mathrm{n}(\mathrm{k} \cdot \mathrm{T})$
and

$$
\mathrm{v}(\mathrm{k} \cdot \mathrm{~T})=\mathrm{g}(\mathrm{k} \cdot \mathrm{~T})+\mathrm{e}(\mathrm{k} \cdot \mathrm{~T})
$$

with

$$
\begin{aligned}
& \sigma_{\mathrm{g}}^{2}=\frac{1}{2} \quad \sigma_{\mathrm{n}}^{2}=\mathrm{N}_{\mathrm{o}} \quad \text { and } \quad \sigma_{\mathrm{v}}^{2}=\sigma_{\mathrm{g}}^{2}+\sigma_{\mathrm{e}}^{2} \\
& \sigma_{\mathrm{y}}^{2}=\frac{1}{2} \cdot \mathrm{E}\left[(|\mathrm{y}(\mathrm{k} \cdot \mathrm{~T})|)^{2}\right]=2 \cdot \mathrm{E}_{\mathrm{b}} \cdot \sigma_{\mathrm{g}}^{2}+\mathrm{N}_{\mathrm{o}}=\mathrm{E}_{\mathrm{b}}+\mathrm{N}_{\mathrm{o}}
\end{aligned}
$$

(a) Correlation coefficients are the key to detector performance. Start with

$$
\rho=\frac{\sigma_{g v^{2}}}{\sigma_{g} \cdot \sigma_{v}}
$$

First, the numerator: $\quad \sigma_{\mathrm{gv}}{ }^{2}=\frac{1}{2} \cdot \mathrm{~g}(\mathrm{k} \cdot \mathrm{T}) \cdot \overline{(\mathrm{g}(\mathrm{k} \cdot \mathrm{T})+\mathrm{e}(\mathrm{k} \cdot \mathrm{T}))}=\sigma_{\mathrm{g}}{ }^{2}$

From this,

$$
\rho=\frac{\sigma_{\mathrm{gv}}^{2}}{\sigma_{\mathrm{g}} \cdot \sigma_{\mathrm{v}}}=\frac{\sigma_{\mathrm{g}}^{2}}{\sqrt{\sigma_{\mathrm{g}}^{2} \cdot\left(\sigma_{\mathrm{g}}^{2}+\sigma_{\mathrm{e}}^{2}\right)}}=\frac{1}{\sqrt{1+\frac{\sigma_{\mathrm{e}}^{2}}{\sigma_{\mathrm{g}}^{2}}}}=\frac{1}{\sqrt{1+\Gamma_{\mathrm{r}}^{-1}}}
$$

where we denote the reference SNR by Γ_{e}.
Now get the other correlation coefficient

$$
\alpha=\frac{\sigma_{y v}^{2}}{\sigma_{y} \cdot \sigma_{v}}
$$

We have the numerator as

$$
\begin{aligned}
\sigma_{\mathrm{yv}}^{2} & =\frac{1}{2} \cdot \mathrm{E}(\mathrm{y}(\mathrm{k} \cdot \mathrm{~T}) \cdot \overline{\mathrm{v}(\mathrm{k} \cdot \mathrm{~T})})=\frac{1}{2} \cdot \mathrm{E}\left[\left(\sqrt{2 \cdot \mathrm{E}_{\mathrm{b}}} \cdot \mathrm{~g}(\mathrm{k} \cdot \mathrm{~T}) \cdot \mathrm{b}(\mathrm{k})+\mathrm{n}(\mathrm{k} \cdot \mathrm{~T})\right) \cdot \overline{(\mathrm{g}(\mathrm{k} \cdot \mathrm{~T})+\mathrm{e}(\mathrm{k} \cdot \mathrm{~T}))}\right] \\
\mathbf{I} & =\sqrt{2 \cdot \mathrm{E}_{\mathrm{b}}} \cdot \sigma_{\mathrm{g}}^{2} \cdot \mathrm{~b}(\mathrm{k})
\end{aligned}
$$

Therefore

$$
\alpha=\frac{\sigma_{\mathrm{yv}}^{2}}{\sigma_{\mathrm{y}} \cdot \sigma_{\mathrm{v}}}=\frac{\sqrt{2 \cdot \mathrm{E}_{\mathrm{b}}} \cdot \sigma_{\mathrm{g}}^{2} \cdot \mathrm{~b}(\mathrm{k})}{\sqrt{\left(2 \cdot \mathrm{E}_{\mathrm{b}} \cdot \sigma_{\mathrm{g}}^{2}+\mathrm{N}_{\mathrm{o}}\right) \cdot\left(\sigma_{\mathrm{g}}^{2}+\sigma_{\mathrm{e}}^{2)}\right.}}
$$

$$
\mathbf{I}=\frac{\mathrm{b}(\mathrm{k})}{\sqrt{\left(1+\frac{\mathrm{N}_{\mathrm{o}}}{2 \cdot \mathrm{E}_{\mathrm{b}} \cdot \sigma_{\mathrm{g}}^{2}}\right) \cdot\left(1+\frac{\left.\sigma_{\mathrm{e}}^{2}\right)}{\sigma_{\mathrm{g}}^{2}}\right)}}=\frac{\mathrm{b}(\mathrm{k})}{\sqrt{\left(1+\Gamma_{\mathrm{b}}^{-1}\right) \cdot\left(1+\Gamma_{\mathrm{r}}^{-1)}\right)}}
$$

or

$$
\alpha=\frac{\mathrm{b}(\mathrm{k}) \cdot \rho}{\sqrt{\left(1+\Gamma_{\mathrm{b}}^{-1}\right)}}
$$

and it depends on $b(k)$.
(b) The decision variable is

$$
q(k)=\operatorname{Re}(y(k \cdot T) \cdot \overline{v(k \cdot T)})=\frac{1}{2} \cdot(y(k \cdot T) \cdot \overline{v(k \cdot T)}+\overline{y(k \cdot T)} \cdot v(k \cdot T))
$$

Define the arrays

$$
\mathbf{z}(\mathrm{k})=\binom{\mathrm{y}(\mathrm{k} \cdot \mathrm{~T})}{\mathrm{v}(\mathrm{k} \cdot \mathrm{~T})} \quad \mathbf{Q}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Then $q(k)$ is the quadratic form

$$
\mathrm{q}(\mathrm{k})=\frac{1}{2} \cdot \overline{\mathbf{z}(\mathrm{k})^{\mathrm{T}}} \cdot \mathbf{Q} \cdot \mathbf{z}(\mathrm{k})
$$

(c) To get the BER, assume that $b(k)=1$, so that an error is made if $q(k)<0$. From the last page of Section 4.1 in the notes, we have the probability that the decision variable is negative as

$$
\mathrm{P}_{\mathrm{e}}=\operatorname{Pr}(\mathrm{q}(\mathrm{k})<0)=\frac{1}{2} \cdot(1-\alpha)
$$

From the expression for α in part (a), with $b(k)=1$,

$$
\mathrm{P}_{\mathrm{e}}=\frac{1}{2} \cdot\left[1-\frac{\rho}{\sqrt{\left(1+\Gamma_{\mathrm{b}}^{-1}\right)}}\right]=\frac{1}{2} \cdot\left[1-\frac{1}{\sqrt{\left(1+\Gamma_{\mathrm{b}}^{-1}\right) \cdot\left(1+\Gamma_{\mathrm{r}}^{-1}\right)}}\right]
$$

Note the error floor as Γ_{b} becomes infinite: $P_{e}=>0.5(1-\rho)$, so good estimates are important.
(d) The BER for coherent detection is obtained by letting the reference SNR go to infinity (equivalently, letting $\rho=1$) in the result from part (c). We get

$$
\mathrm{P}_{\mathrm{e}}=\frac{1}{2} \cdot\left[1-\frac{1}{\left.\sqrt{\left(1+\Gamma_{\mathrm{b}}^{-1}\right.}\right)}\right]=\frac{1}{2} \cdot\left(1-\sqrt{\left.\frac{\Gamma_{\mathrm{b}}}{1+\Gamma_{\mathrm{b}}}\right)} \quad \quad\right. \text { coherent }
$$

For differential detection, where we use the previous pulse as our reference, it is easy to show that the effect of channel noise in that estimate is to make

$$
\rho=\frac{1}{\sqrt{1+\Gamma_{\mathrm{b}}^{-1}}} \quad \text { differential }
$$

so that the result from part (c) becomes

$$
\mathrm{P}_{\mathrm{e}}=\frac{1}{2} \cdot\left(1-\frac{1}{1+\Gamma_{\mathrm{b}}^{-1}}\right)=\frac{1}{2 \cdot\left(1+\Gamma_{\mathrm{b}}\right)} \quad \text { differential }
$$

As noted in the question sheet, these are well-known expressions.
(e) In coherent detection, we have

$$
\mathrm{y}=\mathrm{A} \cdot \mathrm{~g} \cdot \mathrm{~b}+\mathrm{n} \quad \mathrm{v}=\mathrm{g} \quad \text { where the time index } k \text { has been dropped }
$$

so that

$$
\mathrm{q}=\operatorname{Re}(\mathrm{y} \cdot \overline{\mathrm{~g}})=\operatorname{Re}\left[\mathrm{A} \cdot(|\mathrm{~g}|)^{2} \cdot \mathrm{~b}+\mathrm{n} \cdot \overline{\mathrm{~g}}\right]=\mathrm{A} \cdot \mathrm{x} \cdot \mathrm{~b}+\mathrm{v} \quad \text { where } \quad \mathrm{v}=\operatorname{Re}(\mathrm{n} \cdot \overline{\mathrm{~g}})
$$

Now examine the statistics of v. The noise n is Gaussian, with variance $\frac{1}{2} \cdot \mathrm{E}\left[(|n|)^{2}\right]=N_{o}$ so that the variance of its real and imaginary parts separately are also N_{o}. When conditioned on g, the product $\mathrm{n} \cdot \mathrm{g}$ remains Gaussian. The phase of g doesn't matter, because n already has uniformly distributed phase, so the only discernible effect is that the variance is scaled by $|g|^{2}$. Thus

$$
\sigma_{v}{ }^{2}=\mathrm{N}_{\mathrm{o}} \cdot(|\mathrm{~g}|)^{2}=\mathrm{N}_{\mathrm{o}} \cdot \mathrm{x}
$$

The next step is to observe that q is equivalent to a real binary decision system with additive Gaussian noise. If $b=1$, the probability is error is just what you learned in your first course in communications

$$
P_{e}(x)=Q\left(\frac{A \cdot x}{\sigma_{v}}\right)=Q\left(\sqrt{2 \cdot \Gamma_{b} \cdot x}\right) \quad \text { where } \quad Q(z)=\frac{1}{\sqrt{2 \cdot \pi}} \cdot \int_{z}^{\infty} e^{\frac{-\alpha^{2}}{2}} d \alpha
$$

The average error rate is just the expectation over the squared magnitude of the gain

$$
\mathrm{P}_{\mathrm{e} _a v}=\int_{0}^{\infty} \mathrm{P}_{\mathrm{e}}(\mathrm{x}) \cdot \mathrm{p}_{\mathrm{x}}(\mathrm{x}) \mathrm{dx}
$$

so we need the pdf $\mathrm{p}_{\mathrm{x}}(\mathrm{x})$. We have already seen in the notes that z has an exponential distribution, and its mean is

$$
\mathrm{E}(\mathrm{z})=\mathrm{E}\left[(|\mathrm{~g}|)^{2}\right]=2 \cdot \sigma_{\mathrm{g}}^{2}=1
$$

so that

$$
\mathrm{p}_{\mathrm{x}}(\mathrm{x})=\mathrm{e}^{-\mathrm{x}} \quad \text { for } \mathrm{x} \geq 0
$$

Now we "merely" have to evaluate

$$
\mathrm{P}_{\mathrm{e} _a v}=\int_{0}^{\infty} \mathrm{P}_{\mathrm{e}}(\mathrm{x}) \cdot \mathrm{p}_{\mathrm{x}}(\mathrm{x}) \mathrm{dx}=\int_{0}^{\infty} \mathrm{Q}\left(\sqrt{2 \cdot \Gamma_{\mathrm{b}} \cdot \mathrm{x}}\right) \cdot \mathrm{e}^{-\mathrm{x}} \mathrm{dx}
$$

With the definition of Q, this is clearly a case for integration by parts. Unfortunately, working with x directly is a challenge. At some point, you have to make a change of variables to $w=\operatorname{sqrt}(x)$, and this is equivalent to working with the Rayleigh distributed $w=|g|$, instead of $x=|g|^{2}$. I should have flagged this more clearly in the question statement. In any case, after making the change, we have

$$
\mathrm{P}_{\mathrm{e} _\mathrm{av}}=\int_{0}^{\infty} \mathrm{Q}\left(\sqrt{2 \cdot \Gamma_{\mathrm{b}}} \cdot \mathrm{w}\right) \cdot \mathrm{e}^{-\mathrm{w}^{2}} \cdot 2 \cdot \mathrm{w} \text { dw } \quad \text { You can see the Rayleigh pdf of } w \text { here. }
$$

To integrate by parts, we identify $\quad u=Q\left(\sqrt{2 \cdot \Gamma_{b}} \cdot \mathrm{w}\right) \quad \mathrm{dv}=2 \cdot \mathrm{w} \cdot \mathrm{e}^{-\mathrm{w}^{2}} \cdot \mathrm{dw}$
From these, we obtain

$$
\begin{aligned}
& d u=\frac{-\sqrt{2 \cdot \Gamma_{b}}}{\sqrt{2 \cdot \pi}} \cdot e^{-\Gamma_{b} \cdot w^{2}} \quad v=-e^{-w^{2}} \\
& P_{e_{-}-a v}=\frac{1}{2}-\frac{\sqrt{2 \cdot \Gamma_{b}}}{\sqrt{2 \cdot \pi}} \cdot \int_{0}^{\infty} e^{-\left(\Gamma_{b}+1\right) \cdot w^{2}} d w
\end{aligned}
$$

We recognise the integral as one side of the Gaussian pdf, but it is missing the standard deviation scale factor. Rewrite as

$$
\mathrm{P}_{\mathrm{e} _a \mathrm{av}}=\frac{1}{2}-\frac{\sqrt{2 \cdot \Gamma_{\mathrm{b}}}}{\sqrt{2 \cdot\left(\Gamma_{\mathrm{b}}+1\right)}} \cdot \frac{\sqrt{2 \cdot\left(\Gamma_{\mathrm{b}}+1\right)}}{\sqrt{2 \cdot \pi}} \cdot \int_{0}^{\infty} \mathrm{e}^{-\left(\Gamma_{\mathrm{b}}+1\right) \cdot \mathrm{w}^{2}} \mathrm{dw}
$$

which simplifies to

$$
\mathrm{P}_{\mathrm{e}_{-} \mathrm{av}}=\frac{1}{2} \cdot\left(1-\sqrt{\frac{\Gamma_{\mathrm{b}}}{\Gamma_{\mathrm{b}}+1}}\right)
$$

This is the same expression we obtained through use of quadratic forms.

A final note on Problem 2 - it is not usual for the estimation error variance $\sigma_{e}{ }^{2}$ to be independent of SNR. Normally, the channel estimation procedure is affected by the additive noise, so that increasing SNR also decreases the estimation error.

