UNIVERSITY OF CANTERBURY
Dept. of Electrical and Computer Engineering

ENEL 673

Solutionsto Assignment 3 June, 2002
1. Two Seemingly-Different MM SE Solutions

Wehavey = CA+n = Fb+n where CisMxK and the noise covariance matrix is

H

Rp :éE(n >n) =1Im

—=.
(8 First, estimate the data bit b, fromy. Form bhat; = wlT % The MMSE weight vector w; is

the solution of the MxM normal equations Ry’Wl =P

1 H _1__H
where Ry = E>Ebn(y>y ) = E>F>F + 1\

assuming that the b and n ensembles are independent and that dl bitsareiid, and

1 ( v)_ 1
P1 = - Fpn % -5*1

To obtain dl weight vectors a once, collect the columns of W and P to form the matrix norma
equation

-1
- — Ayt C
Ry>W P or W eF>F + 2% ¢ x
The estimate is therefore
bhat = F8FF "+ 24 € g 6

Next, estimate the data from the vector of sufficient sats  z = FH>y = Fheb+F i

The normd equations follow the same pattern as above. We need the Gram matrix
R, = 1 (227 = Leteete
z =5 %n\z2 ] =3

and the cross correlation matrix
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P, = gEbn(y*JH) = %FH%:

Then we have the norma equations

. .
R, W, =P, or Fheee + FeDw, = 28
[} 2

®ra

1
With probability one, > >FH>F isnon-singular, given its gaigics, S0 we can multiply both sides of the

equation by itsinverse, to obtain the KxK set

. 1
H ¢ _ _ agH ¢
FOF+ 24 L, =1 or W, = 8F oF + 24§
Then the etimate is
bhat = Wz = 8FhE 4 20, € 2
- Z>Z e KQ Y ( )

In (1) and (2), we have dternative forms of MM SE estimates of b. Thereisless computation in (2),
since the matrix to be inverted issmdler. But do they produce the same estimate? That's what we
determinein part (b).

(b) We can demondtrate that (1) and (2) produce the same result by expanding F inasngular vdue

decomposition. For the following discusson, assume that KEM |, dthough it fill holdsif K>M. From

the SVD, we have
&S50

F=Usw"=(Ug Up)g “ow = ugs " 3)

e0 g

where

* V isKxK with orthonorma columns that span the input (b) space.

* S isMxK and contains the KxK submatrix S, adiagona matrix of the K real non-negative
sngular vaues (actualy, pogtive red with probability one for our problem) s 4,S»,...Sk.-

* U isMxM with orthonorma columns, of which the firgt K form the MxK submatrix Ug and the
remainder form Ug. The columns of U span the output (y) space, and the columns of Ug span the
sgnd subspace (the space of images Fb of the vectorsin the input space).

We will subgtitute the SVD of F into (1) and (2) to seeif they are the same.

It's easier to start with (2), so make the subdtitution, using the last equdity of (3). The weight
matrix becomes

-1

-1 .
_ a.H ¢ H. _a H,, H H ¢ H, W H
bhat = gF F+2hp F oy = QViBg g UgB V' + 24 WoBg gy



-1
1 = gv>5$2>vH+ zxKE >V>SS>USH>y snce Ug isunitary and S¢ isred and

diagona
2, H H¢ 1 H . L
1= QVBSNTH 20 WL W8 gy dnceV isunitary
2 ¢ 1 H H . . )
= V>§SS + ZXKQ N NS gy snceV isunitary
2 ¢ 1 H . N
1= VESS + 2ty p By sinceV is unitary
& s S 0
1 = Vdiagh 1 0,0, 2K '->USH>y (4)
S +2 Sk +24

since Sgand | are diagond, making the inverse matrix smple. This has anice intepretation. Since

the vectorsin Ug are an orthonormal basis of the signal subspace, the operation UsH % obtainsthe

components of the projection of y onto the signad subspace. Each component is then scaled by a
function of its singular value (the scale factor, or gain, of that one-dimensiona subspace) - in effect, a
MMSE estimate is gpplied to each component separately in thisbasis. Findly, the MM SE estimates
multiply the columnsof V to produce the estimate bhat in the input space.

Now, we try to do the same for equation (1). Subgtitute the first equdity of (3) into (1):

bhat = F8FF + 23 €

-1
= Vs utBus st s 24y, € Ty

-1
= vsTutBus®ut s 21, Oy

-1 . o
|:V>SH>gSZ+2>iME >UH>y snce U isunitary

-1
1= V{Sg 0) s+ 21y L Wy adnoetha S?isdiagond

Vs ¥ (5)

Thisisthe same expresson as (4), so the two formulations of the MM SE estimate produce the same
result.



2. ZF MUD With Imperfect CSI

We have the estimate (use subscript h to denote estimate "hat")
“1g H~ ¢t H
bh =A %Ch >ChQ >Ch X/
“1g~H~ ¢ 1 H
v=A 8o e e {epAbemen)  whee  m=EAD

s=b+a+b

-1 -1
whee a = A 1’gChH’ChE >ChH>m b =A 1’gChH’Ch;(g >ChH>n

Channd estimation error has produced m another additive disturbance. Isit noise-like? What are
itsgatigics? Fird, it isa least conditiondly Gaussan (conditioned on b). Closer ingpection shows
that the random phasesin E make mindependent of b, which contains only +/-1 components, so it is
unconditiondly Gaussan. Second, it has zero mean, since E has zero mean. Findly, its covariance
Metrix is

Rm= éEeb(EAbeAH H) = %EE(EAZEH) snce the data components arei.i.d.

Thei,k component of this matrix isjust

_1 20 O« 2.8 A2
Ry = zfegéé A% pe, (0= Q) Ak
€ ] a i
O Rp=s ezé Aj2>{. We have equipower dgnds, so A = /2>Es>t,whid1weca1 subgtitute to
j
. 2
obtan Ry, = s o K2¥EH!

So the new noise macts just like the AWGN n, just with adifferent variance. Effectively, we have
done no more than reduce the SNR.

What is the effective SNR, compared with the origind SNR? The origina noise variance was
unity, so the new noise varianceis 1 + 2K eZ>ES andthenew SNR is

£ G

G.= =
S . .
a 2. ¢ a 2~ ¢
ol + 2Kos By, L+ 2Kos Gy,

where the second equality uses the fact that Eg equasthe origind SNIR, since the origina noise
variance was unity. Thislooksright. For zero estimation error variance, it reduces to the origina
SNR Gs. If it isnon-zero, then even pumping the origina SNIR up to huge vaues leaves the dtered

SNR a 1/2Ks 2 - thet is, there is an error floor.



(b) Asfor the BER, the white noise equivaence of mmeans that our previous expressions for BER of
ZF MUD hoald, athough with an dtered SNR. They were the same as Sngle-user maxima ratio
combining with M-K+1 degrees of freedom), so that

G
m(G) = S BC(n k) = — 1
1+ Gy KIXn- K)!
- mc) g Y~ gd+ma)g"
p.(c.M)= & BC(M - 1+ m,m)we A2/ &
(G M) & 2 o @ ( e 2 g

(¢) There are many waysto answer this question. Hereisone. For any target BER, such as 10-3,
thereisacorresponding target SNR G for a ZF system with a certain number on antennas and perfect
channd gtate information. The modified SNR must at least equal that figure, so we obtain ardation
between G,and s 2,

Gs

Gt£ > -
a ¢
é1+ 2>K>se >(3SE

Ass¢? increases from zero, Gg must increase to compensate. 1t doesn't work forever, though - the
best wecan doisG,® ¥, sothat

1 1
G £ o sSE
2>K>se2 2K Gy

To relate this to the required correlaion coefficient r , we use

seZ:(l- r2)>sc2

Sinces 2 =1/2, we have the absolute minimum requirement

-1
- (kg = (approx)
As an example, for M=2 antennas, we need about 13 dB SNR for 10-3. Thisis 20 in naturd units, o

that r cannot drop below 0.988 - and it should be considerably better than that, since we don't want
to use infinite tranamit power.

2KOG

(d) From (c), we see that the variance of the additive disturbance mis proportiona to the product of
estimation error variance and SNIR, at least for equipower signas. From this, we expect that stronger
sgnas generate greater contributions to additive noise. Going back to (a), we can make this
quantitative. The covariance matrix is



_ 20 2
Rm—se>aAj>t
j

Thisiswhite noise, as before, so the variance of the estimation error disturbance fdls equaly and
randomly on the two bits. This means that the two users experience the same effective noise variance,
just asin the perfect CSl case, dthough that varianceis greater here, given by

20 .2 _ 2
sead A t1=1+2%4 ’(Gstrong+ GWeak)
j
The effective SNR values of the users differ, Snce oneis strong and one is weak:

_ Garong
Ggrong = >
1+2s4 ’(Gstrong + Gweak)
B Giveak
Ggrong =

1+2% ez’(Gstrong + Gweak)

The wesker user, being weaker, has amuch poorer error rate. So, in summary,

* The stronger user experiences an effective estimation error noise leve that is amost proportiona
to its own power, with asmall contribution from the weaker user. Asthe power of both users
increases, the Gaussian noise contribution becomes negligible, by comparison, and we are into an
error floor region.

* The wesker user experiences the the same effective estimation error noise leve, whichis
proportiond to the power of the stronger user. Too bad for the weaker user. With perfect CSl, it
might have had agood SNR. With channel estimation error, depending on the correlation coefficient
r, its SNR might be very low indeed.

A complicating factor, which | didn't address, is the fact that ther for the sronger user istypicaly
much better than ther for the weaker user.



