
and the cross correlation matrix

Rζ
1
2

Ebν ζ ζ
H

⋅( )⋅=
1
2

FH⋅ F⋅ FH⋅ F⋅ FH F⋅+=

The normal equations follow the same pattern as above.  We need the Gram matrix

ζ FH y⋅= FH F⋅ b⋅ FH ν⋅+=     Next, estimate the data from the vector of sufficient stats

1( )bhat FH F FH⋅ 2 IM⋅+





1−
⋅ y⋅=

The estimate is therefore

W F FH⋅ 2 IM⋅+





1−
F⋅=or Ry W⋅ P=

To obtain all weight vectors at once, collect the columns of W and P to form the matrix normal 
equation

p1
1
2

Ebν y b1


⋅( )⋅=
1
2

f1⋅=

assuming that the b and ν ensembles are independent and that all bits are iid, and 

Ry
1
2

Ebν y yH⋅( )⋅=
1
2

F⋅ FH⋅ IM+=where

the solution of the MxM normal equations Ry w1⋅ p1=

The MMSE weight vector w1 isbhat1 w1
T


y⋅=(a)  First, estimate the data bit b1 from y.  Form

Rν
1
2

E nH n⋅( )⋅= IM=

We have y C A⋅ b⋅ ν+= F b⋅ ν+=    where C is MxK and the noise covariance matrix is 
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bhat FH F⋅ 2 IK⋅+





1−
FH⋅ y⋅= V Σ s

H
⋅ Us

H⋅ Us⋅ Σ s⋅ VH⋅ 2 IK⋅+





1−
V⋅ Σ s

H
⋅ Us

H⋅ y⋅=

     It's easier to start with (2), so make the substitution, using the last equality of (3).  The weight 
matrix becomes 

We will substitute the SVD of F into (1) and (2) to see if they are the same.  

*  V is KxK with orthonormal columns that span the input (b) space.

*  Σ  is MxK and contains the KxK submatrix Σ s, a diagonal matrix of the K real non-negative 
singular values (actually, positive real with probability one for our problem) σ1,σ2,...σK.

*  U is MxM with orthonormal columns, of which the first K form the MxK submatrix Us and the 
remainder form U0.  The columns of U span the output (y) space, and the columns of Us span the 
signal subspace (the space of images Fb of the vectors in the input space).

where

3( )F U Σ⋅ VH⋅= Us U0( )
Σ s

0









⋅ VH⋅= Us Σ s⋅ VH⋅=

(b)  We can demonstrate that (1) and (2) produce the same result by expanding F in a singular value 
decomposition.  For the following discussion, assume that K≤M , although it still holds if K>M.  From 
the SVD, we have

In (1) and (2), we have alternative forms of MMSE estimates of b.  There is less computation in (2), 
since the matrix to be inverted is smaller.  But do they produce the same estimate?  That's what we 
determine in part (b).

2( )bhat Wζ ζ⋅= FH F⋅ 2 IK⋅+





1−
FH⋅ y⋅=

Then the estimate is

Wζ FH F⋅ 2 IK⋅+





1−
=or FH F⋅ 2 IK⋅+



 Wζ⋅ IK=

With probability one, 
1
2

FH⋅ F⋅  is non-singular, given its statistics, so we can multiply both sides of the 

equation by its inverse, to obtain the KxK set

1
2

FH⋅ F⋅ FH⋅ F⋅ FH F⋅+





Wζ⋅
1
2

FH⋅ F⋅=or Rζ Wζ⋅ Pζ=

Then we have the normal equations

Pζ
1
2

Ebν y bH⋅( )⋅=
1
2

FH⋅ F⋅=

2



This is the same expression as (4), so the two formulations of the MMSE estimate produce the same 
result.

5( )V diag
σ 1

σ1
2

2+
, , ,

σK

σK
2

2+
,









⋅ Us
H⋅ y⋅=

and note that Σ2 is diagonalV Σs 0( )⋅ Σ
2

2 IM⋅+





1−
⋅ UH⋅ y⋅=

V Σ
H

⋅ Σ
2

2 IM⋅+





1−
⋅ UH⋅ y⋅= since U is unitary

V Σ
H

⋅ UH⋅ U Σ
2

⋅ UH⋅ 2 IM⋅+





1−
⋅ y⋅=

V Σ
H

⋅ UH⋅ U Σ⋅ VH⋅ V⋅ Σ
H

⋅ UH⋅ 2 IM⋅+





1−
⋅ y⋅=

bhat FH F FH⋅ 2 IM⋅+





1−
⋅ y⋅=

     Now, we try to do the same for equation (1).  Substitute the first equality of (3) into (1):

since Σ s and IK are diagonal, making the inverse matrix simple.  This has a nice intepretation.  Since 

the vectors in Us are an orthonormal basis of the signal subspace, the operation Us
H y⋅   obtains the 

components of the projection of y onto the signal subspace.  Each component is then scaled by a 
function of its singular value (the scale factor, or gain, of that one-dimensional subspace) - in effect, a 
MMSE estimate is applied to each component separately in this basis.  Finally, the MMSE estimates 
multiply the columns of V to produce the estimate bhat in the input space.

4( )V diag
σ 1

σ1
2

2+
, , ,

σK

σK
2

2+
,









⋅ Us
H⋅ y⋅=

since V is unitaryV Σs
2

2 IK⋅+





1−
⋅ Σ s⋅ Us

H⋅ y⋅=

since V is unitaryV Σ s
2

2 IK⋅+





1−
⋅ VH⋅ V⋅ Σ s⋅ Us

H⋅ y⋅=

since V is unitaryV Σ s
2

⋅ VH⋅ 2 V⋅ IK⋅ VH⋅+





1−
V⋅ Σ s⋅ Us

H⋅ y⋅=

since Us is unitary and Σ s is real and 
diagonal

V Σ s
2

⋅ VH⋅ 2 IK⋅+





1−
V⋅ Σ s⋅ Us

H⋅ y⋅=

3



where the second equality uses the fact that Es equals the original SNR, since the original noise 
variance was unity.  This looks right.  For zero estimation error variance, it reduces to the original 
SNR Γs.  If it is non-zero, then even pumping the original SNR up to huge values leaves the altered 
SNR at 1/2Kσe

2 - that is, there is an error floor.

Γ's
Es

1 2 K⋅ σe
2

⋅ Es⋅+





=
Γs

1 2 K⋅ σe
2

⋅ Γs⋅+





=

      What is the effective SNR, compared with the original SNR?  The original noise variance was 

unity, so the new noise variance is 1 2 K⋅ σe
2

⋅ Es⋅+   and the new SNR is

So the new noise µ acts just like the AWGN ν, just with a different variance.  Effectively, we have 
done no more than reduce the SNR.  

so Rµ σ e
2

j

Aj
2 I⋅∑⋅= .  We have equipower signals, so A 2 Es⋅ I⋅= , which we can substitute to 

obtain Rµ σ e
2

K⋅ 2⋅ Es⋅ I⋅=

Rµ i k,

1
2

Ee
j

Aj
2 ei j,⋅ ek j,


⋅∑








⋅= σ e
2

j

Aj
2 δ i k,⋅∑⋅=

The i,k component of this matrix is just

since the data components are i.i.d.Rµ
1
2

Eeb E A⋅ b⋅ bH⋅ AH⋅ EH⋅( )⋅=
1
2

Ee E A2⋅ EH⋅( )⋅=

     Channel estimation error has produced µ, another additive disturbance.  Is it noise-like?  What are 
its statistics?  First, it is at least conditionally Gaussian (conditioned on b).  Closer inspection shows 
that the random phases in E make µ independent of b, which contains only +/-1 components, so it is 
unconditionally Gaussian.  Second, it has zero mean, since E has zero mean.  Finally, its covariance 
matrix is

β A 1− Ch
H Ch⋅





1−
⋅ Ch

H⋅ ν⋅=α A 1− Ch
H Ch⋅





1−
⋅ Ch

H⋅ µ⋅=where

b α+ β+=

µ E A⋅ b⋅=where A 1− Ch
H Ch⋅





1−
⋅ Ch

H⋅ Ch A⋅ b⋅ µ+ ν+( )⋅=

bh A 1− Ch
H Ch⋅





1−
⋅ Ch

H⋅ y⋅=

We have the estimate (use subscript h to denote estimate "hat")

2.  ZF MUD With Imperfect CSI

4



(d)  From (c), we see that the variance of the additive disturbance µ is proportional to the product of 
estimation error variance and SNR, at least for equipower signals.  From this, we expect that stronger 
signals generate greater contributions to additive noise.  Going back to (a), we can make this 
quantitative.  The covariance matrix is

As an example, for M=2 antennas, we need about 13 dB SNR for 10-3.  This is 20 in natural units, so 
that ρ cannot drop below 0.988 - and it should be considerably better than that, since we don't want 
to use infinite transmit power.

(approx)ρ 1 K Γ t⋅( ) 1−
−≥ 1

1

2 K⋅ Γ t⋅
−=

Since σc
2 =1/2,  we have the absolute minimum requirement

σe
2

1 ρ
2

−( ) σc
2

⋅=

To relate this to the required correlation coefficient ρ, we use

σe
2 1

2 K⋅ Γ t⋅
≤or Γ t

1

2 K⋅ σe
2

⋅
≤

As σe2  increases from zero, Γs must increase to compensate.  It doesn't work forever, though - the 
best we can do is Γs → ∞, so that 

Γ t
Γs

1 2 K⋅ σe
2

⋅ Γs⋅+





≤

(c)  There are many ways to answer this question.  Here is one.  For any target BER, such as 10-3, 
there is a corresponding target SNR Γt for a ZF system with a certain number on antennas and perfect 
channel state information.  The modified SNR must at least equal that figure, so we obtain a relation 
between Γs and σe

2, 

Perr Γ' M,( ) 1 µ Γ'( )−
2









M

0

M K−

m

BC M 1− m+ m,( )
1 µ Γ'( )+

2








m
⋅∑

=

⋅=

BC n k,( )
n!

k! n k−( )!⋅
=µ Γ( )

Γ's

1 Γ's+
=

(b)   As for the BER, the white noise equivalence of µ means that our previous expressions for BER of 
ZF MUD hold, although with an altered SNR.  They were the same as single-user maximal ratio 
combining with M-K+1 degrees of freedom), so that

5



Rµ σ e
2

j

Aj
2 I⋅∑⋅=

This is white noise, as before, so the variance of the estimation error disturbance falls equally and 
randomly on the two bits.  This means that the two users experience the same effective noise variance, 
just as in the perfect CSI case, although that variance is greater here, given by  

σe
2

j

Aj
2∑⋅ 1+ 1 2 σe

2
⋅ Γstrong Γweak+( )⋅+=

The effective SNR values of the users differ, since one is strong and one is weak:

Γ'strong
Γstrong

1 2 σe
2

⋅ Γstrong Γweak+( )⋅+
=

Γ'strong
Γweak

1 2 σe
2

⋅ Γstrong Γweak+( )⋅+
=

The weaker user, being weaker, has a much poorer error rate.  So, in summary,

*  The stronger user experiences an effective estimation error noise level that is almost proportional 
to its own power, with a small contribution from the weaker user.  As the power of both users 
increases, the Gaussian noise contribution becomes negligible, by comparison, and we are into an 
error floor region.

*  The weaker user experiences the the same effective estimation error noise level, which is 
proportional to the power of the stronger user.  Too bad for the weaker user.  With perfect CSI, it 
might have had a good SNR.  With channel estimation error, depending on the correlation coefficient 
ρ, its SNR might be very low indeed.

A complicating factor, which I didn't address, is the fact that the ρ for the stronger user is typically 
much better than the ρ for the weaker user.
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