Error Plots for Elementary MUD Analysis (accompanies Section 2.5 of the notes)

Definitions and parameter entry:

aions and parameter entry.		
power ratio: user 1/user 2	pulse crosscorrelation coefficient	noise std
$\lambda := 2$	ρ := 0.6	dev σ := 1
user 1 SNR and amplitude	γ_1 A $_1 = \sqrt{\gamma_1}$	
user 2 SNR and amplitude	$\gamma_2 = \frac{\gamma_1}{\lambda}$ A $_2 = \sqrt{\gamma_2}$	

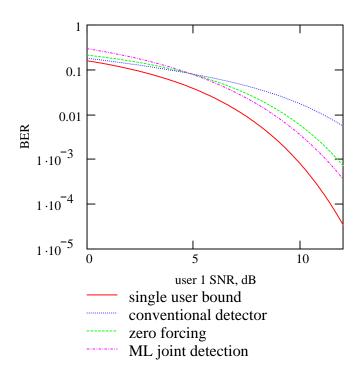
Single user bound

$$\mathbf{P}_{1 \operatorname{sing}}(\gamma_{1}) \coloneqq \mathbf{Q}(\sqrt{\gamma_{1}}) \qquad \mathbf{P}_{2 \operatorname{sing}}(\gamma_{1}) \coloneqq \mathbf{Q}(\sqrt{\gamma_{1}} \cdot \lambda^{-1})$$

Ignore MAI, conventional detector

$$P_{1conv}(\gamma_{1},\rho) \coloneqq \frac{1}{2} \cdot Q\left(\sqrt{\gamma_{1}} - \sqrt{\gamma_{1}\cdot\lambda^{-1}}\cdot\rho\right) + \frac{1}{2} \cdot Q\left(\sqrt{\gamma_{1}} + \sqrt{\gamma_{1}\cdot\lambda^{-1}}\cdot\rho\right)$$
$$P_{2conv}(\gamma_{1},\rho) \coloneqq \frac{1}{2} \cdot Q\left(\sqrt{\gamma_{1}\cdot\lambda^{-1}} - \sqrt{\gamma_{1}}\cdot\rho\right) + \frac{1}{2} \cdot Q\left(\sqrt{\gamma_{1}\cdot\lambda^{-1}} + \sqrt{\gamma_{1}}\cdot\rho\right)$$

Zero forcing

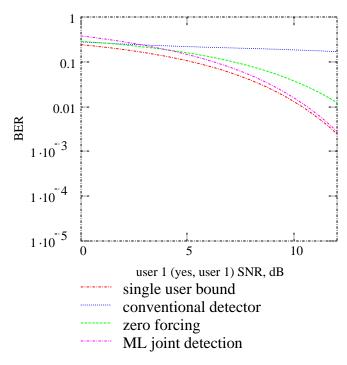

$$\mathbf{P}_{1zf}(\gamma_{1},\rho) \coloneqq \mathbf{Q}\left[\sqrt{\gamma_{1}}\cdot\left(1-\rho^{2}\right)\right] \qquad \mathbf{P}_{2zf}(\gamma_{1},\rho) \coloneqq \mathbf{Q}\left[\sqrt{\gamma_{1}}\cdot\lambda^{-1}\cdot\left(1-\rho^{2}\right)\right]$$

ML joint detection

$$P_{MLcross}(\gamma_{1},\rho) \coloneqq \frac{1}{2} \cdot Q\left[\sqrt{\gamma_{1}} \cdot \left(1 + \lambda^{-1} + 2 \cdot \rho \cdot \lambda^{-0.5}\right)\right] + \frac{1}{2} \cdot Q\left[\sqrt{\gamma_{1}} \cdot \left(1 + \lambda^{-1} - 2 \cdot \rho \cdot \lambda^{-0.5}\right)\right]$$

$$P_{1ML}(\gamma_{1},\rho) \coloneqq P_{1sing}(\gamma_{1}) + P_{MLcross}(\gamma_{1},\rho)$$
$$P_{2ML}(\gamma_{1},\rho) \coloneqq P_{2sing}(\gamma_{1}) + P_{MLcross}(\gamma_{1},\rho)$$

Plots are on the next page...



$$\rho = 0.6$$
 $\lambda = 2$

Notes:

* A large value of ρ.
* ZF worse than conv. at low SNR, because noise enhancement.
* ML union bound diverges at low SNR.
* ML bound is too loose for the strong user - a problem with standard union bound.

User 1 performance, various detectors

User 2 performance, various detectors

Notes:

* Conv. detector crippled by MAI.
* ML benefits this weaker user, effectively eliminating MAI.