Typical Correlation Matrices of Signature Sequences

This worksheet generates examples of the correlation matrix R that plays a central role in MUD. For simplicity, it assumes chip alignment and one sample per chip. It is asynchronous by symbol and includes delay spread, but uses only short codes.

Definitions:

N _c = 15	chips per symbol	K := 3	number of users
N := 4	number of symbols in	the transmi	ssion
L := 2	number of multipath c	omponents	

Set the delay (in chips) of each user manually:

$$Nd_0 \coloneqq 0$$
 $Nd_1 \coloneqq 3$ $Nd_2 \coloneqq 6$ $N_{del} \coloneqq max(Nd)$

Generate random signature sequences.

data2(x) := if(rnd(1)>0.5, 1, -1) random +1, -1 generator

gensignature
$$(N_c, K) :=$$
 for $i \in 0... N_c - 1$
for $k \in 0... K - 1$
seq_{i,k} \leftarrow data2(i)
seq

Have a look at the signatures:

Next, the procedure for creating S for symbol zero. Expand and shift each signature to account for delay spread, then pack the users into successive columns. The number of rows will be

$$\begin{aligned} \textbf{makeS} \left(K, L, N_{c}, Nd, seq \right) &\coloneqq & N_{rows} \leftarrow N_{c} + N_{del} + L - 1 \\ N_{del} \leftarrow max(Nd) \\ \text{for } me \in 0.. N_{rows} - 1 \\ \text{for } me \in 0.. N_{c} - 1 \\ \text{for } k \in 0.. K - 1 \\ \text{for } k \in 0.. K - 1 \\ \text{for } l \in 0.. L - 1 \\ \text{for } i \in 0.. N_{c} - 1 \\ \text{for } i \in 0.. N_{c} - 1 \\ \text{for } i \in 0.. N_{c} - 1 \\ \text{for } i \in 0.. N_{c} - 1 \\ \text{for } srow_{c} \leftarrow seq_{i,k} \\ \text{S} \end{aligned}$$

The number of rows and number of columns in **S** are

$$N_{rows} \coloneqq N_{c} + N_{del} + L - 1 \qquad N_{rows} = 22$$
$$N_{cols} \coloneqq K \cdot L \qquad N_{cols} = 6$$

Compare the sequences and the S matrix

$$\mathbf{S} := \mathbf{makeS}(\mathbf{K}, \mathbf{L}, \mathbf{N}_{\mathbf{C}}, \mathbf{Nd}, \mathbf{seq})$$

seq =				
seq =		0	1	2
	0	-1	-1	1
	1	-1	1	-1
	2	1	-1	-1
seq =	3	-1	1	-1
	4	-1	1	1
	5	-1	-1	-1
	6	1	1	1
	7	1	1	-1
	8	1	1	1
	9	1	-1	1
	10	-1	1	-1
	11	-1	1	1
	12	-1	1	-1
	13	1	1	1
	14	1	-1	-1

		0	1	2	3	4	5
	0	-1	0	0	0	0	0
	1	-1	-1	0	0	0	0
	2	1	-1	0	0	0	0
	3	-1	1	-1	0	0	0
S =	4	-1	-1	1	-1	0	0
	5	-1	-1	-1	1	0	0
	6	1	-1	1	-1	1	0
	7	1	1	1	1	-1	1
	8	1	1	-1	1	-1	-1
	9	1	1	1	-1	-1	-1
	10	-1	1	1	1	1	-1
	11	-1	-1	1	1	-1	1
	12	-1	-1	-1	1	1	-1
	13	1	-1	1	-1	-1	1
	14	1	1	1	1	1	-1
	15	0	1	1	1	1	1

This shows only some of the rows. To see the remaining entries, click on the matrix and use the scroll bar. We'll need zero fill arrays further below. Here's a routine to create one:

zeromatrix(Nrows, Ncols) :=
$$\begin{cases} \text{for } ir \in 0.. \text{ Nrows} - 1 \\ \text{for } ic \in 0.. \text{ Ncols} - 1 \\ F_{ir, ic} \leftarrow 0 \\ F \end{cases}$$

Finally, a routine to create the signal matrix for the whole received sequence, by replicating the time-zero matrix N times: S=diag(S,S,S,S)

$$\begin{aligned} \textit{makeS}(N, K, L, N_{c}, \textbf{S}) &\coloneqq & \text{longfill} \leftarrow \text{zeromatrix}(\text{rows}(\textbf{S}), \textbf{K} \cdot L) \\ \text{shortfill} \leftarrow \text{zeromatrix}(N_{c}, \textbf{K} \cdot L) \\ \textbf{S} \leftarrow \textbf{S} \\ & \text{for } n \in 1.. N - 1 \\ \textbf{S} \leftarrow \text{stack}(\textbf{S}, \text{longfill}) \\ & \text{temp} \leftarrow \textbf{S} \\ & \text{for } n \in 1.. N - 1 \\ & \text{lemp} \leftarrow \text{stack}(\text{shortfill}, \text{submatrix}(\text{temp}, 0, \text{newlast}, 0, \textbf{K} \cdot L) \\ & \textbf{S} \leftarrow \text{augment}(\textbf{S}, \text{temp}) \\ & \textbf{S} \end{aligned}$$

Create the matrix and compare with predecessors above

$$\mathbf{S} \coloneqq \boldsymbol{makeS}(\mathbf{N}, \mathbf{K}, \mathbf{L}, \mathbf{N}_{\mathbf{C}}, \mathbf{S})$$

		0	1	2	3	4	5	6	7	8	9
	0	-1	0	0	0	0	0	0	0	0	0
	1	-1	-1	0	0	0	0	0	0	0	0
	2	1	-1	0	0	0	0	0	0	0	0
	3	-1	1	-1	0	0	0	0	0	0	0
	4	-1	-1	1	-1	0	0	0	0	0	0
	5	-1	-1	-1	1	0	0	0	0	0	0
_	6	1	-1	1	-1	1	0	0	0	0	0
S =	7	1	1	1	1	-1	1	0	0	0	0
	8	1	1	-1	1	-1	-1	0	0	0	0
	9	1	1	1	-1	-1	-1	0	0	0	0
	10	-1	1	1	1	1	-1	0	0	0	0
	11	-1	-1	1	1	-1	1	0	0	0	0
	12	-1	-1	-1	1	1	-1	0	0	0	0
	13	1	-1	1	-1	-1	1	0	0	0	0
	14	1	1	1	1	1	-1	0	0	0	0
	15	0	1	1	1	1	1	-1	0	0	0

This does not show the full matrix. To see more entries, click on it and use the scroll bars.

This is a big matrix: $rows(\mathbf{S}) = 88$ $cols(\mathbf{S}) = 24$

Now form the signal correlation matrix relating the correlator outputs

$$\textbf{\textit{R}} \coloneqq \textbf{\textit{S}}^T \cdot \textbf{\textit{S}}$$

It's smaller: $rows(\mathbf{R}) = 24$ $cols(\mathbf{R}) = 24$

It is also Hermitian and diagonal dominant, as the displays on the next page demonstrate.

The eigenvalue ratio of a matrix is a good measure of its conditioning.

eivalratio(R) :=
$$\lambda \leftarrow eigenvals(R)$$

 $\frac{\max(\lambda)}{\min(\lambda)}$

This does not show the full matrix, so click on it and use the scroll bars if you want to see more entries.

eivalratio(\boldsymbol{R}) = 10.708

Now that we have all the required procedures, try different values and see how the surface plot changes.

N_c = 15 chips per symbol K = 4 number of users

N := 4 number of symbols in the transmission

L := 3 number of multipath components

Set the delay (in chips) of each user manually: k := 0..K - 1 $Nd_k := 0$

$$Nd_0 \coloneqq 0$$
 $Nd_1 \coloneqq 3$ $Nd_2 \coloneqq 6$ $N_{del} \coloneqq max(Nd)$

 $seq := gensignature(N_{c}, K) \qquad <== put cursor on this equation, press F9$ $\mathbf{S} := makeS(K, L, N_{c}, Nd, seq) \qquad \mathbf{S} := makeS(N, K, L, N_{c}, S) \qquad \mathbf{R} := \mathbf{S}^{T} \cdot \mathbf{S}$

R

 $eivalratio(\mathbf{R}) = 223.841$