Typical Correlation Matrices of Signature Sequences

This worksheet generates examples of the correlation matrix R that plays a central role in MUD. For simplicity, it assumes chip alignment and one sample per chip. It is asynchronous by symbol and includes delay spread, but uses only short codes.

Definitions:

$$
\begin{array}{ll}
\mathrm{N}_{\mathrm{c}}:=15 & \text { chips per symbol } \quad \mathrm{K}:=3 \text { number of users } \\
\mathrm{N}:=4 & \text { number of symbols in the transmission } \\
\mathrm{L}:=2 & \text { number of multipath components }
\end{array}
$$

Set the delay (in chips) of each user manually:

$$
\mathrm{Nd}_{0}:=0 \quad \mathrm{Nd}_{1}:=3 \quad \mathrm{Nd}_{2}:=6 \quad \mathrm{~N}_{\mathrm{del}}:=\max (\mathrm{Nd})
$$

Generate random signature sequences.

$$
\begin{aligned}
& \operatorname{data} 2(\mathrm{x}):=\operatorname{if}(\operatorname{rnd}(1)>0.5,1,-1) \quad \text { random }+1,-1 \text { generator } \\
& \text { gensignature }\left(\mathrm{N}_{\mathrm{c}}, \mathrm{~K}\right):=\left\lvert\, \begin{array}{r}
\text { for } \mathrm{i} \in 0 . . \mathrm{N}_{\mathrm{c}}-1 \\
\text { for } \mathrm{k} \in 0 . . \mathrm{K}-1 \\
\operatorname{seq}_{\mathrm{i}, \mathrm{k}} \leftarrow \operatorname{data}(\mathrm{i})
\end{array}\right. \\
& \text { seq }
\end{aligned} \quad \begin{aligned}
& \text { seq }:=\text { gensignature }\left(\mathrm{N}_{\mathrm{c}}, \mathrm{~K}\right) \quad \begin{array}{l}
<===\text { To get a new set, click on this equation and } \\
\text { press F9, then scroll down to see the effect. }
\end{array}
\end{aligned}
$$

Have a look at the signatures:

$\operatorname{seq}=$| | 0 | 1 | 2 |
| ---: | ---: | ---: | ---: |
| 0 | -1 | -1 | 1 |
| 1 | -1 | 1 | -1 |
| 2 | 1 | -1 | -1 |
| 3 | -1 | 1 | -1 |
| 4 | -1 | 1 | 1 |
| 5 | -1 | -1 | -1 |
| 6 | 1 | 1 | 1 |
| 7 | 1 | 1 | -1 |
| 8 | 1 | 1 | 1 |
| 9 | 1 | -1 | 1 |
| 10 | -1 | 1 | -1 |
| 11 | -1 | 1 | 1 |
| 12 | -1 | 1 | -1 |
| 13 | 1 | 1 | 1 |
| 14 | 1 | -1 | -1 |

Next, the procedure for creating \mathbf{S} for symbol zero. Expand and shift each signature to account for delay spread, then pack the users into successive columns. The number of rows will be

The number of rows and number of columns in \mathbf{S} are

$$
\begin{array}{ll}
\mathrm{N}_{\text {rows }}:=\mathrm{N}_{\mathrm{c}}+\mathrm{N}_{\text {del }}+\mathrm{L}-1 & \mathrm{~N}_{\text {rows }}=22 \\
\mathrm{~N}_{\text {cols }}:=\mathrm{K} \cdot \mathrm{~L} & \mathrm{~N}_{\text {cols }}=6
\end{array}
$$

Compare the sequences and the \mathbf{S} matrix

$$
\mathbf{S}:=\operatorname{makeS}\left(\mathrm{K}, \mathrm{~L}, \mathrm{~N}_{\mathrm{c}}, \mathrm{Nd}, \mathrm{seq}\right\}
$$

$\operatorname{seq}=$| | 0 | 1 | 2 |
| ---: | ---: | ---: | ---: |
| 0 | -1 | -1 | 1 |
| 1 | -1 | 1 | -1 |
| 2 | 1 | -1 | -1 |
| 3 | -1 | 1 | -1 |
| 4 | -1 | 1 | 1 |
| 5 | -1 | -1 | -1 |
| 6 | 1 | 1 | 1 |
| 7 | 1 | 1 | -1 |
| 8 | 1 | 1 | 1 |
| 9 | 1 | -1 | 1 |
| 10 | -1 | 1 | -1 |
| 11 | -1 | 1 | 1 |
| 12 | -1 | 1 | -1 |
| 13 | 1 | 1 | 1 |
| 14 | 1 | -1 | -1 |

$\mathbf{S}=$| | 0 | 1 | 2 | 3 | 4 | 5 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | -1 | 0 | 0 | 0 | 0 | 0 |
| 1 | -1 | -1 | 0 | 0 | 0 | 0 |
| 2 | 1 | -1 | 0 | 0 | 0 | 0 |
| 3 | -1 | 1 | -1 | 0 | 0 | 0 |
| 4 | -1 | -1 | 1 | -1 | 0 | 0 |
| 5 | -1 | -1 | -1 | 1 | 0 | 0 |
| 6 | 1 | -1 | 1 | -1 | 1 | 0 |
| 7 | 1 | 1 | 1 | 1 | -1 | 1 |
| 8 | 1 | 1 | -1 | 1 | -1 | -1 |
| 9 | 1 | 1 | 1 | -1 | -1 | -1 |
| 10 | -1 | 1 | 1 | 1 | 1 | -1 |
| 11 | -1 | -1 | 1 | 1 | -1 | 1 |
| 12 | -1 | -1 | -1 | 1 | 1 | -1 |
| 13 | 1 | -1 | 1 | -1 | -1 | 1 |
| 14 | 1 | 1 | 1 | 1 | 1 | -1 |
| 15 | 0 | 1 | 1 | 1 | 1 | 1 |

This shows only some of the rows. To see the remaining entries, click on the matrix and use the scroll bar.

We'll need zero fill arrays further below. Here's a routine to create one:

$$
\text { zeromatrix(Nrows, Ncols) := } \left\lvert\, \begin{gathered}
\text { for } \text { ir } \in 0 . . \text { Nrows - } 1 \\
\text { for ic } \in 0 . . \text { Ncols - } 1 \\
\mathrm{~F}_{\mathrm{ir}, \mathrm{ic}} \leftarrow 0 \\
\mathrm{~F}
\end{gathered}\right.
$$

Finally, a routine to create the signal matrix for the whole received sequence, by replicating the time-zero matrix N times: $\boldsymbol{S}=\operatorname{diag}(\mathbf{S}, \mathbf{S}, \mathbf{S},, \mathbf{S})$

Create the matrix and compare with predecessors above

$$
\boldsymbol{S}:=\boldsymbol{\operatorname { m a k }} \boldsymbol{S}\left(\mathrm{N}, \mathrm{~K}, \mathrm{~L}, \mathrm{~N}_{\mathrm{c}}, \mathbf{S}\right)
$$

$\boldsymbol{S}=$| | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 3 | -1 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 4 | -1 | -1 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5 | -1 | -1 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 6 | 1 | -1 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | 0 |
| 7 | 1 | 1 | 1 | 1 | -1 | 1 | 0 | 0 | 0 | 0 |
| 8 | 1 | 1 | -1 | 1 | -1 | -1 | 0 | 0 | 0 | 0 |
| 9 | 1 | 1 | 1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 |
| 10 | -1 | 1 | 1 | 1 | 1 | -1 | 0 | 0 | 0 | 0 |
| 11 | -1 | -1 | 1 | 1 | -1 | 1 | 0 | 0 | 0 | 0 |
| 12 | -1 | -1 | -1 | 1 | 1 | -1 | 0 | 0 | 0 | 0 |
| 13 | 1 | -1 | 1 | -1 | -1 | 1 | 0 | 0 | 0 | 0 |
| 14 | 1 | 1 | 1 | 1 | 1 | -1 | 0 | 0 | 0 | 0 |
| 15 | 0 | 1 | 1 | 1 | 1 | 1 | -1 | 0 | 0 | 0 |

This does not show the full matrix. To see more entries, click on it and use the scroll bars.

This is a big matrix: $\quad \operatorname{rows}(\boldsymbol{S})=88 \quad \operatorname{cols}(\boldsymbol{S})=24$

Now form the signal correlation matrix relating the correlator outputs

$$
\boldsymbol{R}:=\boldsymbol{S}^{\mathrm{T}} \cdot \boldsymbol{S}
$$

It's smaller: \quad rows $(\boldsymbol{R})=24 \quad \operatorname{cols}(\boldsymbol{R})=24$

It is also Hermitian and diagonal dominant, as the displays on the next page demonstrate.

The eigenvalue ratio of a matrix is a good measure of its conditioning.

$$
\text { eivalratio }(R):=\left\lvert\, \begin{aligned}
& \lambda \leftarrow \text { eigenvals }(R) \\
& \frac{\max (\lambda)}{\min (\lambda)}
\end{aligned}\right.
$$

$\boldsymbol{R}=$| | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 15 | 4 | 4 | -3 | -3 | 0 | 0 | 0 | 0 | 0 |
| 1 | 4 | 15 | 1 | 4 | 0 | -3 | -1 | 0 | 0 | 0 |
| 2 | 4 | 1 | 15 | -2 | -2 | 5 | -3 | 0 | 0 | 0 |
| 3 | -3 | 4 | -2 | 15 | 3 | -2 | 0 | -3 | 1 | 0 |
| 4 | -3 | 0 | -2 | 3 | 15 | -8 | 2 | -1 | 3 | -2 |
| 5 | 0 | -3 | 5 | -2 | -8 | 15 | -5 | 2 | -4 | 3 |
| 6 | 0 | -1 | -3 | 0 | 2 | -5 | 15 | 4 | 4 | -3 |
| 7 | 0 | 0 | 0 | -3 | -1 | 2 | 4 | 15 | 1 | 4 |
| 8 | 0 | 0 | 0 | 1 | 3 | -4 | 4 | 1 | 15 | -2 |
| 9 | 0 | 0 | 0 | 0 | -2 | 3 | -3 | 4 | -2 | 15 |
| 10 | 0 | 0 | 0 | 0 | 0 | -1 | -3 | 0 | -2 | 3 |
| 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3 | 5 | -2 |
| 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -3 | 0 |
| 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3 |
| 14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

This does not show the full matrix, so click on it and use the scroll bars if you want to see more entries.
eivalratio $(\boldsymbol{R})=10.708$

The surface plot shows the full matrix. Use your mouse to drag it to different orientations.

\boldsymbol{R}

Now that we have all the required procedures, try different values and see how the surface plot changes.

$$
\begin{array}{ll}
\mathrm{N}_{\mathrm{c}}:=15 & \text { chips per symbol } \quad \mathrm{K}:=4 \quad \text { number of users } \\
\mathrm{N}:=4 & \text { number of symbols in the transmission } \\
\mathrm{L}:=3 & \text { number of multipath components }
\end{array}
$$

Set the delay (in chips) of each user manually: $\mathrm{k}:=0 . . \mathrm{K}-1 \quad \mathrm{Nd}_{\mathrm{k}}:=0$

$$
\begin{aligned}
& \mathrm{Nd}_{0}:=0 \quad \mathrm{Nd}_{1}:=3 \quad \mathrm{Nd}_{2}:=6 \\
& \mathrm{~N}_{\text {del }}:=\max (\mathrm{Nd}) \\
& \text { seq := gensignature }\left(\mathrm{N}_{\mathrm{c}}, \mathrm{~K}\right) \quad<==\text { put cursor on this equation, press F9 } \\
& \mathbf{S}:=\operatorname{makeS}\left(\mathrm{K}, \mathrm{~L}, \mathrm{~N}_{\mathrm{c}}, \mathrm{Nd}, \operatorname{seq}\right) \quad \boldsymbol{S}:=\operatorname{makeS}\left(\mathrm{N}, \mathrm{~K}, \mathrm{~L}, \mathrm{~N}_{\mathrm{c}}, \mathrm{~S}\right) \quad \boldsymbol{R}:=\boldsymbol{S}^{\mathrm{T}} \cdot \boldsymbol{S}
\end{aligned}
$$

R

$$
\text { eivalratio }(\boldsymbol{R})=223.841
$$

