DEMONSTRATION OF TRIANGULARIZATION BY CHOLESKY AND GAUSSIAN ELIMINATION

This worksheet reduces a Hermition matrix to triangular factors by Cholesky and by the simpler Gaussian elimination, and shows numerically that they are equivalent.

Generate a Random Hermitian Matrix

N := 5 i := 0.. N - 1 j := 0.. N - 1

 $X_{i,j} := md(2) - 1$ <=== click once here, press F9, to get new matrix

 $\mathbf{R} := \overline{\left(\mathbf{X}^{T}\right)} \cdot \mathbf{X} \qquad \text{make it Hermitian}$

Here it is:

$$\mathbf{R} = \begin{bmatrix} 3.385 & 0.344 & -0.223 & 0.458 & 0.533 \\ 0.344 & 1.975 & 0.638 & -0.334 & -0.191 \\ -0.223 & 0.638 & 1.938 & -0.301 & 0.208 \\ 0.458 & -0.334 & -0.301 & 1.088 & 0.364 \\ 0.533 & -0.191 & 0.208 & 0.364 & 1.482 \end{bmatrix}$$

Cholesky Factorization

F := cholesky(**R**)

F is lower triangular

$$\mathbf{F} = \begin{bmatrix} 1.84 & 0 & 0 & 0 & 0 \\ 0.187 & 1.393 & 0 & 0 & 0 \\ -0.121 & 0.474 & 1.303 & 0 & 0 \\ 0.249 & -0.273 & -0.108 & 0.97 & 0 \\ 0.29 & -0.176 & 0.251 & 0.279 & 1.107 \end{bmatrix}$$

and it factors X:

Its inverse is also lower triangular

$$\mathbf{F}^{-1} = \begin{bmatrix} 0.544 & 0 & 0 & 0 & 0 \\ -0.073 & 0.718 & 0 & 0 & 0 \\ 0.077 & -0.261 & 0.767 & 0 & 0 \\ -0.151 & 0.173 & 0.086 & 1.031 & 0 \\ -0.133 & 0.13 & -0.195 & -0.26 & 0.903 \end{bmatrix}$$

and it diagonalizes the noise covariance matrix

$$\mathbf{F}^{-1} \cdot \mathbf{R} \cdot \mathbf{F}^{-1}^{T} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Gaussian Elimination

To factor \mathbf{R} by Gaussian elimination, we augment it with the identity matrix, then do row reductions. Mathcad's column-oriented notation makes it easier to perform Gaussian elimination on the transpose, so it's column reductions.

$$\begin{aligned} \text{Gauss}(\mathbf{R}) &\coloneqq & \left| \begin{array}{c} \mathbf{Z} \leftarrow \text{augment}(\mathbf{R}, \text{identity}(\mathbf{N}))^{\text{T}} \\ \text{for } i \in 0.. \text{ N} - 2 \\ \text{for } j \in i + 1.. \text{ N} - 1 \\ & \mathbf{Z}^{} \leftarrow \mathbf{Z}^{} - \frac{\mathbf{Z}_{i,j}}{\mathbf{Z}_{i,i}} \cdot \mathbf{Z}^{} \\ & \mathbf{Z}^{\text{T}} \end{aligned} \right. \end{aligned}$$

Upper and lower factors are then extracted by

temp := Gauss(**R**)

 $\mathbf{U} \coloneqq \text{submatrix}(\text{temp}, 0, N - 1, 0, N - 1) \quad \mathbf{L} \coloneqq \text{submatrix}(\text{temp}, 0, N - 1, N, 2 \cdot N - 1)$

They are

$$\mathbf{U} = \begin{bmatrix} 3.385 & 0.344 & -0.223 & 0.458 & 0.533 \\ 0 & 1.94 & 0.661 & -0.38 & -0.246 \\ 0 & 0 & 1.699 & -0.141 & 0.327 \\ 0 & 0 & 0 & 0.94 & 0.271 \\ 0 & 0 & 0 & 0 & 1.227 \end{bmatrix}$$
$$\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -0.102 & 1 & 0 & 0 & 0 \\ 0.101 & -0.341 & 1 & 0 & 0 \\ -0.147 & 0.168 & 0.083 & 1 & 0 \\ -0.147 & 0.144 & -0.216 & -0.288 & 1 \end{bmatrix}$$

and they satisfy $\mathbf{L} \cdot \mathbf{R} = \mathbf{U}$ as seen below

The effect of applying L to the noise covariance matrix is to whiten, but not normalize, the noise components:

$$\mathbf{L} \cdot \mathbf{R} \cdot \mathbf{L}^{\mathrm{T}} = \begin{bmatrix} 3.385 & 0 & 0 & 0 & 0 \\ 0 & 1.94 & 0 & 0 & 0 \\ 0 & 0 & 1.699 & 0 & 0 \\ 0 & 0 & 0 & 0.94 & 0 \\ 0 & 0 & 0 & 0 & 1.227 \end{bmatrix}$$

It is easy to show (and to see) that this matrix is just the diagonal of U above. Thus the SNR on each bit decision, assuming correct decisions fed back, is

$$\gamma_i := \mathbf{U}_{i,i}$$
 assuming unit noise variance

Now compare with Cholesky. Because it normalizes, as well as whitens, the noise, the SNR on each decision is the square of the diagonal entries of \mathbf{F} (again assuming unit noise variance).

$$\gamma_{ch_i} \coloneqq (\mathbf{F}_{i,i})^2$$

They are the same

$$\gamma^{\rm T} = (3.385 \ 1.94 \ 1.699 \ 0.94 \ 1.227)$$

 $\gamma_{\rm ch}^{\rm T} = (3.385 \ 1.94 \ 1.699 \ 0.94 \ 1.227)$