
DEMONSTRATION OF TRIANGULARIZATION BY 
CHOLESKY AND GAUSSIAN ELIMINATION

This worksheet reduces a Hermition matrix to triangular factors by Cholesky and by the simpler 
Gaussian elimination, and shows numerically that they are equivalent.

Generate a Random Hermitian Matrix

N 5 i 0 N 1.. j 0 N 1..

Xi j,
rnd 2( ) 1 <=== click once here, press F9, to get new matrix

R XT X. make it Hermitian

Here it is:
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Cholesky Factorization

F cholesky R( )

F is lower triangular
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and it factors X:
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Its inverse is also lower triangular
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and it diagonalizes the noise covariance matrix
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Gaussian Elimination

To factor R by Gaussian elimination, we augment it with the identity matrix, then do row 
reductions.  Mathcad's column-oriented notation makes it easier to perform Gaussian 
elimination on the transpose, so it's column reductions.



Gauss R( ) Z augment R identity N( ),( )T
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Upper and lower factors are then extracted by

temp Gauss R( )

U submatrix temp 0, N 1, 0, N 1,( ) L submatrix temp 0, N 1, N, 2 N. 1,( )

They are
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and they satisfy L R. U as seen below
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The effect of applying L to the noise covariance matrix is to whiten, but not normalize, the noise 
components:
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It is easy to show (and to see) that this matrix is just the diagonal of U above.  Thus the SNR on 
each bit decision, assuming correct decisions fed back, is 

γi Ui i,
assuming unit noise variance

Now compare with Cholesky.  Because it normalizes, as well as whitens, the noise, the SNR on 
each decision is the square of the diagonal entries of F (again assuming unit noise variance).

γ chi
Fi i,

2

They are the same

γT 3.385 1.94 1.699 0.94 1.227( )=

γ ch
T 3.385 1.94 1.699 0.94 1.227( )=


