
FIRST ORDER STATS 44

4.2  Rayleigh and Rice fading

Rayleigh Fading

     From this point on, we assume that the channel complex gain or transfer function is Gaussian.  For 
flat fading with no LOS component (i.e., zero mean), we have the variance 
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Note that the real and imaginary components are individually Gaussian with variance σg2.  The 
probability density function is

pg g( )
1

2 π⋅ σg
2

⋅
exp

1
2

−
g( )2

σg
2

⋅








⋅=
4.2.2( )

and its isoprobability contours are circles centred on the origin:
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If we change to polar coordinates g gI j gQ⋅+= r ej θ⋅⋅=  then standard transformations [Papo84, 

Proa95, Lee82] give the joint pdf as 
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This pdf of the amplitude r is the Rayleigh distribution, and this type of fading (no LOS component) is 
termed Rayleigh fading.  Let's see what it looks like.
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Clearly, r and θ are independent, since the joint pdf is the product of their individual pdfs, given by
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and so does the standard deviation.The mean equals the decay constant

Exponentially distributed squared magnitude
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because it is exponentially distributed.  This follows from a simple change of variables to z from r in 

the Rayleigh pdf.  Alternatively, note that z gI
2 gQ

2+= , and that the sum of independent squared 

Gaussian variates has the χ2 distribution, and that the χ2 distribution with two degrees of freedom is 
exponential.  In any case, the pdf of z is

z r2= g( )2=

     It's often easier to work with the squared amplitude (twice as large as instantaneous power)
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The cumulative distribution function of z and its asymptote are
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The asymptote gives us two very useful rules of thumb.  Remember them:

*  The probability that received power is 10 dB or more below the mean level (a 10 dB 
fade) is 10%; probability of a 20 dB fade is 1%; probability of a 30 dB fade is 0.1%; 
etc.  Now go back to the fade graph in Section 3.1 and see whether this seems to be true 
(recalculate a few times).  Remember that with λ/50 sampling, some deep fades may be missed, 
so you are really looking at the fraction of the number of samples M that falls below the 
threshold.

*  The probability that the power drops below a given level  decreases only inversely with 
increasing average power σg

2.  That's important - and disappointing - if the level is a threshold 
below which operation is unacceptable, since doubling the average power only cuts the probability 
in half!
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Rice Fading

     In mobile satellite systems, or in land mobile radio in suburban and rural areas, the signal is often 
received with a LOS component which produces Rice fading.  The total gain  

g gs gd+= 4.2.7( )

is the sum of a constant specular (or LOS or discrete) component gs and a zero mean Gaussian 
diffuse (or scattered) component gd, so that g is a nonzero mean Gaussian variate.  The specular 
component has K times the power of the diffuse component (the Rice K-factor), so that K=0 gives 
Rayleigh fading and K==>∞ gives a constant channel.  But be careful - some literature (mostly in the 
mobile satellite area) uses K as the ratio of diffuse to specular power, the reciprocal of the 
conventional definition.  The sketch shows the isoprobability contours.
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Denote the variance of the diffuse component by σ2.  From the power ratio we have the magnitude of 
the specular component.
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The total average power in g is then
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=  .  Its pdf is Gaussian:
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     Changing to polar coordinates makes z=r2 non-central  χ2 with mean σ2(1+K) and two degrees of 
freedom.  Alternatively, the pdf of r is Rician:
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From the isoprobability sketch above, it is clear that the phase angle is not independent of the 
amplitude.  The unconditional pdf of the phase angle for a real specular component (i.e., zero mean 
phase angle) is obtained by adapting [Proa89, eqn. 4.2.103].  First, the Q function:
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Now let's see what these pdfs look like.  
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     Inspection of the graphs suggests that they can be approximated by Gaussian pdfs for large K.  
It's easy to see why if you rotate the coordinates for gd to resolve it into a radial component (along 
the same line as gs) and a transverse component (orthogonal to the radial component).  For large 
K, the transverse component makes little difference to the amplitude, which is then well modeled by 
the Gaussian radial component with the specular component as a mean.  Similarly, the radial 
component makes little difference to the phase, which is then well modeled by the Gaussian 
transverse component divided by the specular amplitude.  Therefore,
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* approx amplitude pdf, large K:  Gaussian, mean 2 K⋅ σ⋅   and standard deviation σ     

* approx phase pdf, large K:  Gaussian, mean arg gs( ) and standard deviation 
1

2 K⋅
    

Nakagami Density

     When you did the experiment in Appendix J, you noticed that the Rayleigh pdf was a fairly 
rough fit to the histogram of experimental values if the number of paths was small.  Many authors 
report that a better approximation of their experimental measurements is obtained with the 
Nakagami-m distribution, given by [Naka60]
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where m is the order of the pdf, 2σ2 is the mean square value and Γ(m) is the gamma function (equal 
to (m-1)! for integers).  For m=1, Nakagami reduces to Rayleigh.  Let's have a look at it for σ 1:=  :
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     You can see that increasing the order m of the Nakagami distribution changes its character from 
that of purely scattered fading to fading with a LOS component.  For modeling these channels, it is 
therefore a reasonable alternative to the Rice pdf which it resembles.  For larger values of m, just as 
for larger values of K in the Rice pdf, it can be approximated in turn by a Gaussian pdf.

     Why bother with this new pdf, when we already have the Rice pdf?  One reason is its simplicity.  
For example, by change of variables, the squared amplitude z=r2 has a gamma pdf:
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This looks more complicated than it is - just focus on the variation with z and it looks like functions 
you have seen before in your undergraduate course on linear systems and Laplace transforms.  
Consequently, its characteristic function (Laplace transform of pdf) is
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which has an mth order pole at s
m−
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=        You can obtain many analytical results conveniently 

with these expressions, in contrast to the Rice pdf (4.2.11), with its embedded Bessel function.  For 
representative work using the Nakagami pdf see [Pate97], [Ugwe97].  


