4.5 Channel Estimation From Training-Seguences

- We have seen the value of accurate channel estimates in detection of single users. Channel estimation is even more important in multiver detection. How to get those estimates?
- The easiest example is pilot symbol assisted modulation (PSAM). Every $K^{\text {th }}$ symbol is known.

If there are diversity R_{x} antennas, then

- simple analysis:
$R_{g}(k)$ gain autocorrin f in, $R_{g}(0)=\sigma_{g}^{2}$
σ_{n}^{2} noise sample variance
$b(i k)=1$, known, arbitrarily 1
$y(k)=g(k) b(k)+n(k)$ describes all samples.
- design' interpolator:

$$
\hat{g}(i)=\underline{w}_{i j}^{+}=\left[w_{0}^{*} w_{1}^{*} w_{2}^{*} w_{3}^{*}\right]\left[\begin{array}{l}
y^{(0)} \\
y_{(1)} \\
y^{(2} \\
y_{(3)}
\end{array}\right]
$$

$$
\min \frac{\operatorname{linear} \text { estimation: }}{|g(i)-\hat{g}(i)|^{2}}=\overline{|g(i)|^{2}}-\underline{w}_{i}^{+} \overline{\not q g^{+i}}-\overline{g(i) q^{+} \underline{w}}+w_{i}^{+} \overline{y^{+}} \underline{w}
$$

Classic linear estimation:

$$
=\sigma_{g}^{2}-\underline{w}_{i}^{+} 中_{i}-耳_{i}^{+} \underline{w}_{i}^{+}+\underline{w}_{i}^{+} R_{y} \underline{w}_{i}
$$

where

$$
\text { here } R_{y}=\left[\begin{array}{llll}
\sigma_{g}^{2}+\sigma_{n}^{2} & R_{g}(1) & R_{g}(2) & R_{g}(3) \\
R_{g}^{*}(1) & \sigma_{g}^{2}+\sigma_{n}^{2} & R_{g}(1) & R_{g}(2) \\
R_{g}^{*}(2) & R_{g}^{*}(1) & \sigma_{g}^{2}+\sigma_{n}^{2} & R_{g}(1) \\
R_{g}^{*}(3) & R_{g}^{*}(2) & R_{g}^{*}(1) & \sigma_{g}^{2}+\sigma_{n}^{2}
\end{array}\right]
$$

$$
f_{i}=\left[\begin{array}{l}
R_{g}(i) \\
R_{g}(i-k) \\
R_{g}(i-2 k) \\
R_{g}(i-3 k
\end{array}\right]
$$

with solution

$$
\begin{aligned}
& \text { h solution } \\
& \underline{w}_{i}=R_{y}^{-1} f_{i} \quad \hat{g}(i)=\underline{w}_{i}^{+} y=P_{i}^{+} R_{y}^{-1} y \\
&
\end{aligned}
$$

$\left.\left.\begin{array}{c}\text { and error } \\ \text { varaice } \\ E[|g(i)-\hat{g}(i)|\end{array}\right|^{2}\right]=\sigma_{g}^{2}-\underline{w}_{i}^{+} R_{y}^{-1} \underline{w}_{i}=\sigma_{e}^{2}$
e is uncorrelated with pilot samples y and with \hat{g}

- Now calculate the error rate.

We know that the corr'n corf $\rho=\frac{\sigma_{y \hat{g}}^{2}}{\sigma_{y} \sigma_{\hat{\rho}}}$ 目 determines performance. Assume BPSK

$$
\begin{aligned}
\sigma_{y}^{2} & =\frac{1}{2} E\left[|b(i) g(i)+n(i)|^{2}\right]=\sigma_{g}^{2}+\sigma_{n}^{2} \\
\sigma_{g}^{2} & =\frac{1}{2} E\left[p_{i}^{+} R_{y}^{-1} \neq y^{+} R_{y}^{-1} f_{i}\right]=p_{i}^{+} R_{y} p_{i} \\
\sigma_{y \hat{g}}^{2} & =\frac{1}{2} E\left[(b(i)(\hat{g}(i)+e(i))+n(i)) \hat{g}^{*}(i)\right]=b(i) \sigma_{\hat{g}}^{2} \\
& =b(i) p_{i}^{+} R_{y} f
\end{aligned}
$$

so

$$
\rho=\frac{b(i) f_{i}^{+} R_{y} f_{i}}{\sqrt{\left(\sigma_{g}^{2}+\sigma_{n}^{2}\right) f_{i}^{+} R_{y}^{-1} f_{i}^{i}}}
$$

for $b(1)=+1$ then $B E R=\frac{1}{2}(1-\rho)$

- Performance:

Cavers
Trans VT Nov 91

- If the channel has delay spread, sound the channel with pilot sequences

Use in a DFE or Viterbi equaliser

- see N Lo, D. Fakoner, A. Sheikh
"Adaptive Equalization and Diversity Combining for Mobile Radio Using Interpolated Channel Estimates" IEEE Trams vel Tech, val to no 3 Pp 636-645, Aug 91.
Note the diversity effect and reduction of I ε I floor

12. A

- Pilot sequences in more detail:

so it is common to make one or two symbols at the beginning and end "sacrificial," unused.
- An alternative estimation method is ML (instead of the MMSE we just examined), which leads to LS. Here's how. Suppose training seq is p. Then we receive

$$
y=\left[\begin{array}{c}
y(1) \\
\vdots \\
y(I)
\end{array}\right]=\left[\begin{array}{c|c|c}
0 & 0 \\
p & f & 0 \\
\hline & & f \\
\hline 0 & 0
\end{array}\right]\left[\begin{array}{l}
g_{0} \\
g_{1} \\
g_{2}
\end{array}\right]+\left[\begin{array}{c}
n(1) \\
- \\
n(5)
\end{array}\right]
$$

$$
y=P q+n
$$

To minimise the sum of squared errors $\| y-\left.P \hat{g}\right|^{2}$ note: deterministic, not MMSE then $\hat{q}=\left(p^{+} p\right)^{-1} p^{+} y=p^{*} y$ pseuds inverse Proof: $e=y-P \hat{g} ; J=e^{+} e=y^{+} y-y^{+} P \hat{q}-\hat{g}^{+} P^{+} y+\hat{g}^{+} p^{+} p \hat{q} ;$ $\nabla_{\hat{q}}{ }^{J}=0 ; \quad P^{+} P \hat{q}=P^{+} y ; \quad \hat{f}=\left(P^{+} P\right)^{-1} P^{+} y$ The columns of P must be LI - close to orthon is even better (good corrin properties).

- The resulting error, if P g is a good model 4.5G and n is white noise, σ_{n}^{2} is

$$
E=\hat{q}-g \quad(\text { different from } e=\hat{q}-q)
$$

$$
R_{!}=\sigma_{n}^{2}\left(P^{+} P\right)^{-1} \quad \text { so you really doit want } L D
$$ in the cols of P !

From this, you can calculate corr'n coifs.

- Last example: multiple users

sequences have sacrificial symbols for delay spread and misalignment
Now $\neq\left[\begin{array}{c|c|c|c|c|c|c}p_{1} & - & 0 \\ p_{1} & - & p_{1} & p_{k} & p_{k} & 0 \\ p_{k} & 0 & p_{k} \\ \vdots & & 0\end{array}\right]\left[\begin{array}{c}q_{1} \\ q_{2} \\ q_{k}\end{array}\right]+\left[\begin{array}{c}n(1) \\ 1 \\ 1 \\ n(N)\end{array}\right]$ again $y=p q+n$.
Longer sequences, since all cols of P must be linearly independent.

