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radianarg z( ) 0.927=z 5=z 3 j 4⋅+:=

Example:

θ atan
y
x







=r x2 y2+=
Be cautious with this one, since it reduces all angles to 
(-π/2,π/2), and 2nd and 3rd quadrants are lost.  To 
do it right, if x<0, then add π  to the phase (or 
subtract π).  Draw a picture if you're confused.

Polar from Cartesian

(in particular, ejθ = cosθ + j sinθ - see Appendix)y r sin θ( )⋅=x r cos θ( )⋅=

Cartesian from polar

You can convert between representations:

phaseθ arg z( )=imaginary party Im z( )=

magnitude (radius, length)r z=real partx Re z( )=

where

z r ej θ⋅⋅=z x j y⋅+=

PolarCartesian

     Complex numbers contain the square root of -1.  There are two common formats for representing 
them: Cartesian (rectangular) and polar.  If z is a complex variable, they are 
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z2 3 e j− 2⋅⋅:=z1 2 ej 3⋅⋅:=

Example: Add z1 and z2 

z1 z2+ 2− 4j+=z2 4− j+:=z1 2 j 3⋅+:=

Example: Add z1 and z2 

z1

z2

z1 z2

z1 z2

z3 z3

parallelogram head to tail

This is just like adding vectors, and it can be visualized in the same way:

Im z3( ) Im z1( ) Im z2( )+=

Re z3( ) Re z1( ) Re z2( )+=impliesz3 z1 z2+=

     Addition is most easily performed in rectangular coordinates, since

2.1  Addition

2.  BASIC ARITHMETIC OPERATIONS

2

3

1

1-1-2

3

2

Im z( ) 2.728=Re z( ) 1.248−=z 3 ej 2⋅⋅:=

Example:
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z1

z2

z1z2

z1/z2

z1

z2
2 e j− 5⋅⋅=z1 z2⋅ 8 e j−⋅=z2 2 ej 2⋅⋅=z1 4 e j− 3⋅⋅=

Example:  Obtain product and quotient in polars

arg
z1

z2









arg z1( ) arg z2( )−=and
z1

z2

z1

z2
=

where the phase summation is usually interpreted modulo 2π .  The same logic gives, for division, 

arg z1 z2⋅( ) arg z1( ) arg z2( )+=andz1 z2⋅ z1 z2⋅=

That is,

z1 z2⋅ r1 r2⋅ e
j θ1 θ2+( )⋅

⋅=impliesz2 r2 e
j θ2⋅

⋅=z1 r1 e
j θ1⋅

⋅=

     Multiplication and division are easily performed in polar coordinates, since

2.2  Multiplication and Division

arg z1 z2+( ) 2.493−=z1 z2+ 4.05=

If you want to convert the sum back to polars, you have

z1 z2+ 3.228− 2.446j−=z2 1.248− 2.728j−=z1 1.98− 0.282j+=

Convert to cartesian and add:
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y

-y

z

z* z*

z

θ

−θ
x

The drawing shows that complex conjugates are reflections through the real axis.

z


r e j− θ⋅⋅=z r ej θ⋅⋅=

Equivalently, the conjugate of a number has the sign of its phase reversed (why is it equivalent?):

z


x j y⋅−=z x j y⋅+=

The conjugate of a number has the sign of its imaginary part reversed.  It is usually denoted by an 
asterisk, e.g., z*, but Mathcad uses the less common notation of an overhead bar.  Here's an 
example:

3.  COMPLEX CONJUGATES

As for division in Cartesian coordinates, it's a bit trickier, so we'll revisit it after looking at complex 
conjugates.

x1 x2⋅ y1 y2⋅− j x1 y2⋅ y1 x2⋅+( )⋅+=

x1 j y1⋅+( ) x2 j y2⋅+( )⋅ x1 x2⋅ j2 y1⋅ y2⋅+ j x1⋅ y2⋅+ j y1⋅ x2⋅+=

     You can perform multiplication just as easily in Cartesian coordinates by explicit term-by-term 
multiplication

0.31− j 0.54⋅−=8 j−=

z1

z2
0.62 e j− 2.09⋅⋅=z1 z2⋅ 8.1 e j− 0.12⋅⋅=

Product and quotient in polars (and cartesian, if desired):

z2 2.2 e j− 1.1⋅⋅=z1 3.6 ej 0.98⋅⋅=

Convert to polars:

z2 1 j 2⋅−=z1 2 j 3⋅+=

Example:  Obtain product z1z2 and quotient z1/z2 in polars
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     Complex conjugate notation provides some very useful operations.  For starters, see what you 
get when you multiply a number by its conjugate.  If z=x+jy, : 

z z


⋅ x j y⋅+( ) x j y⋅−( )⋅= x2 y2+= rectangular

z z


⋅ r ej θ⋅⋅ r⋅ e j− θ⋅⋅= r2= polar

Interesting - the product of a number and its conjugate is the sum of squares of the components, or 
the squared radius, or squared magnitude |z|2.  If you think of the number as a vector, then you have 
just obtained the dot (inner) product of the vector with itself.

     More generally, you can multiply a number z1 by the conjugate of some other number z2.  This, 
too, has an interesting interpretation.  It's easiest to see it in polars:

z1 z2


⋅ r1 r2⋅ e
j θ1 θ2−( )⋅

⋅=

The magnitude of the product is the product of the magnitudes, just as in the product z1z2, but the 
phase is that of z1 "derotated" by the phase of z2.  That's useful in itself, but now take the real part:

Re z1 z2


⋅( ) Re r1 r2⋅ e
j θ1 θ2−( )⋅

⋅



= r1 r2⋅ cos θ1 θ2−( )⋅=

This is the dot product of  z1 and z2 if we think of them as vectors - a nice geometric interpretation.  
In fact, you can interpret 

Re z1
z2


z2
⋅









and Im z1
z2


z2
⋅









as the components of z1 in the directions parallel and perpendicular to z2, as shown in the sketch 
below.

θ1-θ 2

Im[z 1z2*]

Re[z1z2*]

z1

z2
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cos θ( ) j sin θ( )⋅+=

1
θ

2

2!
−

θ
4

4!
+ + + j θ

θ
3

3!
− + +









⋅+=

ej θ⋅ 1 j θ⋅+
θ

2

2!
− j

θ
3

3!
⋅−

θ
4

4!
+ + + +=

Substitute x=jθ and collect real and imaginary terms:

ex 1 x+
x2

2!
+

x3

3!
+

x4

4!
+ + + +=

     The first argument uses the series expansion

     You've seen that exp(jθ)=cos(θ)+jsin(θ).  It's called Euler's identity, and it will be part of your 
mental landscape from now on.  But why is it true?  Here you'll see two reasons.

APPENDIX: THE COMPLEX EXPONENTIAL 

This is a straightforward calculation.  It looks somewhat laborious, but would you really prefer to 
convert both numbers to polars, then convert the quotient back to Cartesian?

z1

z2

z1

z2

z2


z2
⋅=

x1 j y1⋅+( )
x2 j y2⋅+( )

x2 j y2⋅−( )
x2 j y2⋅−( )⋅=

x1 x2⋅ y1 y2⋅+ j y1 x2⋅ x1 y2⋅−( )⋅+

x2
2 y2

2+
=

This looks ugly.  But just multiply numerator and denominator by the conjugate of z2:

z1

z2

x1 j y1⋅+

x2 j y2⋅+
=

then 

z2 x2 j y2⋅+=z1 x1 j y1⋅+=

     Now, back to complex division in rectangular coordinates.  If

     Here are two more interpretations.  The average value of the quantity Re[z1z2*] is commonly 
used in signal processing and communications as the correlation between two complex signals.  
Moving to electric circuits, if AC current and voltage are represented by the phasors (complex 
numbers) I and V, then 0.5 Re[IV*] is the average power (averaged over one cycle).
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     Now for the second demonstration.  A defining property of exponentials is that they reproduce 
themselves under differentiation.  The unique solution of the elementary differential equation

θ
f θ( )d

d
j f θ( )⋅= with initial condition f 0( ) 1= is f θ( ) ej θ⋅=

However, f(θ)=cos(θ)+jsin(θ) also satisfies the equation, since

θ
cos θ( ) j sin θ( )⋅+( )d

d
sin θ( )− j cos θ( )⋅+= j cos θ( ) j sin θ( )⋅+( )⋅=

Therefore ej θ⋅ cos θ( ) j sin θ( )⋅+=
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5 e
j

π
2

⋅
⋅
2j

3 j a⋅+
3 j a⋅−

4.  Perform the indicated multiplications or divisions and obtain the results in Cartesians

5 e
j

π
2

⋅
⋅
2j

2

3 j θ⋅+
2 j 4⋅−( ) ej 5⋅⋅3 ej 3⋅⋅ 5⋅ e j− 2⋅⋅

3.  Perform the indicated multiplications or divisions and obtain the results in polars

z j 6⋅+( ) 3 j 3⋅−( )+p j 3⋅+( ) 2 e j− 7⋅⋅( )+3 ej⋅ 4 e j− 2⋅⋅−

2.  Perform the indicated sums and obtain the results in both representations

e
j−

π
2

⋅
e
j

3
2

⋅ π⋅
ej π⋅e

j
π
2

⋅
e0

(sum of exponents implies a product)2 e2 j 3⋅+⋅

r ej 2⋅⋅2 ej θ⋅⋅2 e j− 3⋅⋅

1

2

j

2
+x j 4⋅+2− j 3⋅+3 j 5⋅+

1.  Convert to the other representation (polar or cartesian/rectangular)

QUESTIONS
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