SIMON FRASER UNIVERSITY
 School of Engineering Science

ENSC 428 Data Communications

Solutions to Assignment 1

January 2001

1. PDF of Max Value

The key to this problem is the observation that, for y to be less than or equal to some value, all of the inputs must be less than or equal to the same value:

$$
y \leq \eta \quad \text { implies } \quad x_{i} \leq \eta, \quad \forall i
$$

Since the inputs are statistically independent, the probability that all of them satisfy this condition is the product of the individual probabilities. Since they have the same distribution, we have

$$
F_{y}(\eta)=F_{x}(\eta)^{N}
$$

Differentiation gives the required pdf of y

$$
f_{y}(\eta)=N F_{x}(\eta)^{N-1} f_{x}(\eta)
$$

It is just as simple to work with the min function. For intermediate values, such as the 3rd largest, it's a little more complicated. If you need to know more about this type of problem (and it comes up from time to time), consult probability and statistics books for rank order statistics.

2. Conditional Gaussian PDF

For zero mean Gaussian random variables, the joint pdf has the form

$$
f_{X Y}(x, y)=\frac{1}{2 \pi \sigma_{x} \sigma_{y} \sqrt{1-\rho^{2}}} \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left(\frac{x^{2}}{\sigma_{x}^{2}}+\frac{y^{2}}{\sigma_{y}^{2}}-2 \rho \frac{x}{\sigma_{x}} \frac{y}{\sigma_{y}}\right)\right\}
$$

We can obtain the conditional pdf $f_{Y \mid X}(y \mid x)$ as

$$
f_{Y \mid X}(y \mid x)=\frac{f_{Y X}(y, x)}{f_{X}(x)}
$$

For this, we need the marginal pdf $f_{X}(x)=\int f_{X Y}(x, y) d y$. To prepare for the integration
over y, we rewrite the joint pdf by completing the square in the exponent:

$$
\begin{aligned}
f_{X Y}(x, y) & =\frac{1}{2 \pi \sigma_{x} \sigma_{y} \sqrt{1-\rho^{2}}} \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left(\frac{y^{2}}{\sigma_{y}^{2}}-2 \rho \frac{x}{\sigma_{x}} \frac{y}{\sigma_{y}}+\rho^{2} \frac{x^{2}}{\sigma_{x}^{2}}-\rho^{2} \frac{x^{2}}{\sigma_{x}^{2}}+\frac{x^{2}}{\sigma_{x}^{2}}\right)\right\} \\
& =\frac{1}{2 \pi \sigma_{x} \sigma_{y} \sqrt{1-\rho^{2}}} \exp \left\{-\frac{1}{2} \frac{x^{2}}{\sigma_{x}^{2}}\right\} \exp \left\{-\frac{1}{2}\left(\frac{y-\rho \frac{\sigma_{y}}{\sigma_{x}} x}{\sigma_{y} \sqrt{1-\rho^{2}}}\right)^{2}\right\}
\end{aligned}
$$

Using the normalizing factor on page 2.2.1 of the notes, we perform the integral over y to obtain the marginal pdf

$$
f_{X}(x)=\frac{\sqrt{2 \pi} \sigma_{y} \sqrt{1-\rho^{2}}}{2 \pi \sigma_{x} \sigma_{y} \sqrt{1-\rho^{2}}} \exp \left\{-\frac{1}{2} \frac{x^{2}}{\sigma_{x}^{2}}\right\}=\frac{1}{\sqrt{2 \pi} \sigma_{x}} \exp \left\{-\frac{x^{2}}{2 \sigma_{x}^{2}}\right\}
$$

So the marginal pdfs obtained from a joint Gaussian pdf are also Gaussian. Finally, we form the conditional pdf by division to obtain

$$
f_{Y \mid X}(y \mid x)=\frac{1}{\sqrt{2 \pi} \sigma_{y} \sqrt{1-\rho^{2}}} \exp \left\{-\frac{1}{2}\left(\frac{y-\rho \frac{\sigma_{y}}{\sigma_{x}} x}{\sigma_{y} \sqrt{1-\rho^{2}}}\right)^{2}\right\}
$$

(a) The conditional pdf is also Gaussian in y, as can be seen by inspection of the final result.
(b) The conditional mean is

$$
m_{Y \mid X}=\rho \frac{\sigma_{y}}{\sigma_{x}} x=\frac{\sigma_{x y}^{2}}{\sigma_{x}^{2}} x
$$

The expression makes sense: if the random variables are uncorrelated ($\rho=0$), then the best estimate is zero, the unconditional mean of y; if they are perfectly correlated $(\rho=1)$, then the two variables are simply scaled by their respective variances; similarly with anticorrelation $(\rho=-1)$. It also makes sense dimensionally when X and Y have different units. Note that x and the estimate of y are linearly related - it is a linear estimate.

This is an enormously important result. The conditional mean is the best estimate of Y,
given X (best in the minimum mean squared error sense. For example, if you want to predict the value of a random process using the present value, and the process has autocorrelation function $R(\tau)$, then the best estimate is

$$
\hat{x}\left(t+t_{o}\right)=\frac{R\left(t_{o}\right)}{R(0)} x(t)
$$

(c) The conditional variance can also be read from the conditional pdf:

$$
\sigma_{Y \mid X}^{2}=\sigma_{Y}^{2}\left(1-\rho^{2}\right)
$$

It also makes sense: if the random variables are uncorrelated ($\rho=0$), then the variance is just that of Y in its marginal pdf (no information from X); if they are perfectly correlated ($\rho=1$) or perfectly anticorrelated ($\rho=-1$), then knowledge of X reveals everything about Y, and the conditional variance is zero.

3. Sum of Gaussian Random Variables

The two random variables have pdfs given by

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma_{x}} \exp \left(-\frac{x^{2}}{2 \sigma_{X}^{2}}\right) \quad \text { and } \quad \mathrm{f}_{Y}(y)=\frac{1}{\sqrt{2 \pi} \sigma_{y}} \exp \left(-\frac{y^{2}}{2 \sigma_{Y}^{2}}\right)
$$

(a) The characteristic function of a sum of independent variables $z=x+y$ is the product of the individual characteristic functions, so

$$
M_{Z}(\omega)=M_{X}(\omega) M_{Y}(\omega)=\exp \left(-\frac{1}{2} \omega^{2} \sigma_{X}^{2}\right) \exp \left(-\frac{1}{2} \omega^{2} \sigma_{Y}^{2}\right)=\exp \left(-\frac{1}{2} \omega^{2}\left(\sigma_{X}^{2}+\sigma_{Y}^{2}\right)\right)
$$

The product has the form of a characteristic function of a Gaussian random variable with variance equal to the sum of the variances.
(b) To obtain the pdf of the sum by a direct convolution, we express it as

$$
\begin{aligned}
& f_{Z}(z)=\int_{-\infty}^{\infty} f_{X}(z-\alpha) f_{Y}(\alpha) d \alpha \\
& =\frac{1}{2 \pi \sigma_{X} \sigma_{Y}} \int_{-\infty}^{\infty} \exp \left\{-\frac{1}{2}\left(\frac{z-\alpha}{\sigma_{X}}\right)^{2}\right\} \exp \left\{-\frac{1}{2} \frac{\alpha^{2}}{\sigma_{Y}^{2}}\right\} d \alpha
\end{aligned}
$$

I won't carry it through, but you can see how it will go. As in Question 2, complete the square and use the normalization to ease the pain of integration.

