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1.  Sum of Correlated Random Variables

(a)  Denote the sample spacing by ts, so x x ts( ) x 2 ts⋅( ) x N ts⋅( )( )T=

For N=5, its covariance matrix is

C E x xT⋅( )=
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Matrices like this, in which all the elements of a diagonal are the same, are termed Toeplitz.  Ours is 
also symmetric, a combination that has interesting and useful properties.  In any case, if the 
autocorrelation function is negligible after, say, two samples, then we have only five non-zero 
diagonals, no matter how large N becomes:
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(b)  If  y eT x⋅=   then the variance of y is

σ y
2 E eT x⋅ xT⋅ e⋅( )= eT C⋅ e⋅=
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∑
=

=

If only the autocorrelation function is non-negligible only up to d samples, then

σ y
2 N Rx 0( )⋅ N 1−( ) Rx ts( )⋅+ N 1−( ) Rx ts−( )⋅+

N d−( ) Rx d ts⋅( )⋅ N d−( ) Rx d− ts⋅( )⋅++
. . .=

When N becomes very large, then

σ y
2 N Rx d− ts⋅( ) + Rx ts−( )+ Rx 0( )+ Rx ts( )+ + Rx d ts⋅( )+( )⋅= (approx)

which is proportional to N.

2.  Maximization of SNR

(a)  To make it concrete, use a=1.  Then the mean value ismd
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     Note that scaling all the weights by a common factor scales both the squared mean (the signal 
power) and the noise variance by the square of that factor but leaves γ unchanged.  We can therefore 
maximize γ by maximizing its numerator with a constraint on its denominator, which we might as well 
set to σ2.  Using a Lagrange multiplier λ, we maximize

J

1

N

i

wi mi⋅∑
=









2

λ σ 2⋅
1

N

i

wi( )2∑
=

1−








−=

2



and so on.
w2
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d
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     Now back to the expanded version of the problem.  Using the definition of J on the previous page, 
form each of the partial derivatives in turn (this is equivalent to the gradient, of course):

(improves with increasing number of measurements 
N, provided means mi don't go to zero)

γmax
m

T
m⋅( )2

σ 2
m

T⋅ m⋅
=

m
T

m⋅

σ 2
=

Substituting this w into our definition of SNR γ gives us

λ m
T

m⋅

σ 2
=which we can satisfy withc m⋅ mT⋅ m⋅ c λ⋅ σ 2⋅ m⋅=

The matrix M has rank equal to 1, since any vector w orthogonal to m produces zero when pre- 
multiplied by M, and we can find N-1 linearly independent such vectors.  Thus there are N-1 
eigenvalues of M that equal zero.  There is only one non-zero eigenvalue, and its eigenvector is 
proportional to m.  So make w proportional to m.  More simply, just observe that setting w=cm gives

M m mT⋅=where M w⋅ λ σ 2⋅ w⋅=

That is, we obtain an eigenvalue problem

(note this is a zero vector)∇ J 2 m⋅ mT⋅ w⋅ 2 λ⋅ σ 2⋅ w⋅−= 0=

Setting the gradient with respect to w to zero gives

J wT m⋅ mT⋅ w⋅ λ σ 2⋅ wT w⋅ 1−( )⋅−=

     There are a few ways to get at this.  Here's a concise way, but I'll do the expanded version further 
below.  Denote the column vectors of weights and means as w and m, respectively.  Then
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From the results of part (a), we would multiply the vi variables by weights proportional to bi.  That is 
equivalent to multiplying the original xi variables by weights

bi
mi

σ i
=which has unit variance and meanvi

xi

σ i
=

We can transform it back to the problem in part (a) simply by scaling each of the variables; doing so 
loses no information, since the signal and noise in each variable are scaled by the same amount.  Define

d

1

N

i

wi xi⋅∑
=

=

(b)  If the noise variances are not all the same, the problem is a little tougher, but the principles are the 
same.  We form

     We now know that the weights should be proportional to the mean values.  This is a very 
important result, and it sets the scene for matched filters, antenna arrays and many other statistical 
problems involving maximization of SNR.  For a solution in which the variables are complex, 
instead of real, see the Appendix .

i 1= N. .for wi mi=

Again, recognize this as an eigenvalue problem and reason it through the same way to obtain the 
weights as

M m mT⋅=where M λ σ 2⋅ I⋅−( ) w⋅ 0=

or in matrix form

m1 mN⋅ w1⋅ m2 mN⋅ w2⋅+ + + mN( )2 λ σ 2⋅−  wN⋅+ 0=

, , , ,

m1 m2⋅ w1⋅ m2( )2 λ σ 2⋅−  w2⋅+ + + mN m21⋅ wN⋅+ 0=

m1( )2 λ σ 2⋅−  w1⋅ m2 m1⋅ w2⋅+ + + mN m1⋅ wN⋅+ 0=

This is a set of linear equation in the wi, so collect terms and write them neatly
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wopti

mi

σ i( )2
=

In other words, the optimum weight vector has coefficients

wopt Σ 1−
uopt⋅= S 1− m⋅=and transforming back, uopt Σ 1−

m⋅=

     Now it is just like the problem in part (a).  The optimizing choice makes the transformed weight 
vector u  proportional to b.  Then

b Σ 1−
m⋅=where 

J u
T Σ 1−⋅ m⋅ m

T⋅ Σ 1−⋅ u⋅ λ u
T

u⋅ 1−( )⋅−= u
T

b⋅ b
T⋅ u⋅ λ u

T
u⋅ 1−( )⋅−=

and rewrite J asw Σ 1−
u⋅=u Σ w⋅=Make a chage of variables

Σ diag σ 1 σ 2, . . σ N. .( )=

in which the noise covariance matrix is factored to become S Σ 2
=  , where 

J w
T

m⋅ m
T⋅ w⋅ λ w

T
S⋅ w⋅ 1−( )⋅−= w

T
m⋅ m

T⋅ w⋅ λ w
T Σ⋅ Σ⋅ w⋅ 1−( )⋅−=

Using a Lagrange multiplier, we maximize

S diag σ 1
2 , . . σ N

2. .( )=where γ 1

N

i

wi mi⋅∑
=
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

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wi( )2 σ i( )2⋅∑
=

=
wT m⋅ mT⋅ w⋅

wT S⋅ w⋅
=

     We can obtain the same result with matrix notation.  The SNR is now

wi
mi

σ i( )2
=
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Hz B 106: =watt/Hz No 2 10 10−⋅: =watt Po 10: =

signal bandwidthnoise PSDamp output 
signal power

     To tackle this problem, I'll set up some definitions that are common to FM and PCM:

4.  A Repeater Chain

     In FM, it is slightly less clear, but again consider departures from threshold.  If the transmit power 
is fixed, and you increase the modulation index, then the channel bandwidth and the total noise 
increases, causing below threshold operation and rapidly decreasing output SNR; yet decreasing the 
modulation index reduces the total noise in proportion but the differentiation gain by the square.  Either 
way, you lose.  On the other hand, if the modulation index (hence bandwidth) is fixed, and you 
increase the transmit power, you gain only a proportional increase in output SNR; not a kick in the 
head, but a little disappointing.

     In PCM, operation at threshold is clearly attractive.  If you are at threshold, consider the effect of 
departing from it.  First, if you are concerned with selecting the transmit power when the bandwidth is 
fixed, then increasing the power beyond the threshold point yields no improvement in output SNR.  
On the other hand, if selecting bandwidth is the question when the power is fixed, then increasing the 
bits per sample decreases the energy per bit and increases the BER, thereby degrading output SNR; 
but decreasing the number of bits gives more quantization noise.  However, note that we don't always 
operate at threshold; in some cases, threshold might involve a huge number of bits per sample, so we 
are content to operate into the saturation region, provided that the number of bits is sufficient for good 
output SNR. 

3.  Operation at Threshold

  Again, see the Appendix for a solution when the variables are complex.

γ
wopt

T m⋅ mT⋅ wopt⋅

wopt
T S⋅ wopt⋅

=
mT S 1−⋅ m⋅( )2

mT S 1−⋅ S⋅ S 1−⋅ m⋅
= m

T
S 1−⋅ m⋅=

     What is the resulting maximized SNR?  Substitute this optimized choice for w back into the 
expression for γ and we get

This is another very useful result, especially for coloured noise, time varying noise or different noise 
levels on several different measurements.
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Substituting this expression for Γ , 

Γ
Po

L d M( )( ) No⋅ M⋅ B⋅
=where, at the last amp, SNRo

1
3

Γ⋅ β2⋅=

Finally, the output SNR (assuming threshold and 3σ  loading):

β M( )
Bc M( )

2 B⋅
1−: =

and for the modulation index (Carson's rule)

Bc M( )
Po

L d M( )( ) No⋅ M⋅ 10⋅
: =

Solve this for channel bandwidth as a function of the number of repeaters 

C
N

Po

L d M( )( ) No⋅ M⋅ Bc⋅
10≥=

     The overall C/N at the final amp must be over 10 dB (note that this ratio is carrier power to noise 
power in the transmission bandwidth); that is,

     There are M amplifiers, each with a gain adjusted to compensate for the loss L(x) in the preceding 
cable section.  The noise accumulates, and is proportional to the number of amplifiers traversed.  The 
overall noise PSD (at the input of the last amplifier) is MNo/2.

Transmission by FM

power loss, natural units, not dB L x( ) 10
0.1 Lo⋅ x⋅

: =dB/kmLo 20: =

cable loss function

d M( )
D
M

: =Mkm D 150: =

length of links# of repeaterstotal length 
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SNRo
1
3

Po

L d M( )( ) No⋅ M⋅ B⋅
⋅

Bc

Bc
⋅ β2⋅=

1
3

10⋅
Bc

B
⋅ β2⋅=

10 2⋅
3

β 1+( )⋅ β2⋅=

and since β depends on the number of amps M:

SNRo M( )
20
3

β M( ) 1+( )⋅ β M( )2⋅: =

We can maximize this simply by maximizing β with respect to M.  Referring to the expression for 
we see that we must maximize Bc, which we can do by minimizing its denominator; so find M that 
minimizes

M L d M( )( )⋅ M 10
0.1 Lo⋅ D

M
⋅

⋅= M exp 0.1 Lo⋅ ln 10( )⋅ D
M

⋅


⋅=

Treat M as continuous and set the derivative to zero:

exp 0.1 Lo⋅ ln 10( )⋅ D
M

⋅


M exp 0.1 Lo⋅ ln 10( )⋅ D
M

⋅


⋅ 0.1⋅ Lo⋅ ln 10( )⋅ D

M2
⋅− 0=

which gives the optimum M as

Mopt 0.1 ln 10( )⋅ Lo⋅ D⋅: = Mopt 690.776=

This is a lot of amps!  They're every d Mopt( ) 0.217= km

Moreover, the output SNR is ridiculous:SNRo Mopt( ) 0.975=

     Why did it turn out like this?  Well, whenever you look for an optimum, you have to be clear on 
the phenomena involved.  In our case, if we have too few amps, then the links are too long and the 
signal receive at the final amp is poor.  If there are too many amps, then the accumulated noise is too 
high.  Check what happens as M varies (next page):
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Taking the logarithm and simplifying to form a quadratic equation in n, we obtain

2 2− n⋅ 16 M⋅ Pe⋅= 8 M⋅ exp
Γ M( )−
2 n⋅




⋅=

At the end of our chain of M repeaters, approximate the overall BER as M times the BER on each 
link and the threshold condition becomes

4
22 n⋅ 1−

22 n⋅
⋅ Pe⋅ 1

4
2 2− n⋅⋅=

To apply the threshold condition, note that a 1 dB drop means that the transmission error term is 1/4 
of the quantization error term, so that

(approximately)Pe Q
Γ
n







=
1
2

exp
Γ−

2 n⋅



⋅=then approximate the Q function to give

Γ M( )
Po

L d M( )( ) No⋅ B⋅
: =     First, get the SNR at each repeater

     For any M, we get the distance, hence the SNR at the input to a regenerator.  The trick is to 
obtain the corresponding number of bits so it operates at threshold (defined as a 1 dB drop).  Easy to 
approximate it with the overbound on the Q function.

Transmission by PCM

Negative β for M<400??  It simply 
means that the signal is so weak that to 
stay over threshold requires a channel 
bandwidth lower than that of the signal 
itself.  Clearly impossible.

SNRo M( )
0.158

0.964

0.154

0.092

0.548

0.886

0.974

0.887

0.72

0.535

=β M( )
-0.975

-0.605

-0.167

0.111

0.256

0.318

0.331

0.318

0.289

0.253

=M
100

200

300

400

500

600

700

800

900

1·10  3

=

M 100 200, 1000. .: =
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We see that 60 dB SNRo is achievable with 150 amps (1 km spacing) and 11 or 12 bit linear 
quantization.  A striking contrast to FM!

SNRo M( )
8.212

1.751·10  3

1.308·10  6

1.573·10  9

1.951·10    12

1.963·10    15

1.416·10    18

6.947·10    20

2.285·10    23

=n M( )
2.472

6.34

11.113

16.229

21.367

26.354

31.102

35.571

39.752

=Γ M( )
50

199.054

500

965.349

1.581·10  3

2.321·10  3

3.155·10  3

4.056·10  3

5·10  3

=d M( )
1.5

1.2

1

0.857

0.75

0.667

0.6

0.545

0.5

=M
100

125

150

175

200

225

250

275

300

=

M 100 125, 300. .: =

     In principle, there is an optimum value for M, as there was in FM, although establishing the fact 
requires tracing through some cumbersome limits as M becomes very large.  However, that optimum 
occurs with a huge number of repeaters, a ridiculously large number of bits per sample and a truly 
amazing output SNR.  In practice, as we see in the tables below, we don't bother to approach this 
point, and we can safely work in the region where SNRo increases with M.  Some test values:

(recall 3σ  loading)SNRo M( )
1
3

1

1.25 2 2− n M( )⋅⋅
⋅: =

Finally, the output SNR is simple if we assume operation at threshold:

Note that only the positive root has meaning.n M( )
b M( )− b M( )2 4 c M( )⋅−+

2
: =

so the number of bits required for threshold operation with M repeaters is the solution of the quadratic:

c M( )
Γ M( )−

4 ln 2( )⋅
: =b M( )

ln 8 M⋅( )
2 ln 2( )⋅

: =

where 

n2 b n⋅+ c+ 0=
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∇ J 2 m⋅ mH⋅ w⋅ 2 λ⋅ σ 2⋅ w⋅−= 0=

where the overhead bar denotes conjugation in Mathcad.  Either way, you get

w
w
d

d
0=

w
 wd

d
0=

w
 w

d

d
1=

w
wd

d
1=

The gradient requires a little more care, since J is not analytic.  You could differentiate with respect to 
the real and imaginary parts separately, or use

J wH m⋅ mH⋅ w⋅ λ σ 2⋅ wH w⋅ 1−( )⋅−=we maximizeγ
md( )2

σ d
2

=To maximize 

σ d
2 σ 2

1

N

i

wi( )2∑
=

⋅= σ 2 wH⋅ w⋅=md wH m⋅=

(a)  If the variances are the same, we have

where the superscript H denotes conjugate transpose.  The only difference from the earlier formulation 
is the conjugate on the weights.

d wH x⋅=

     We form the inner product of the weight vector and the measurements as follows

APPENDIX TO QUESTION 2: 
SNR MAXIMIZATION WHEN THE VARIABLES ARE COMPLEX 

     The reason why there is an optimum point, instead of a constant improvement?  If there are too few 
repeaters, then the signal level is too weak and the BER is too high.  On the other hand, if the number 
of repeaters is monstrously huge (with 1 centimetre spacing, say), then there is no appreciable cable 
loss, and the individual link BER is determined by the 10 watt received power.  At this point, increasing 
the number of amps simply increases the accumulated BER at the end of the chain, and the optimized 
number of bits begins to decrease again - but it's a very shallow curve
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since S is symmetric.

γ
wopt

T m⋅ mT⋅ wopt⋅

wopt
T S⋅ wopt⋅

=
mH S 1−⋅ m⋅( )2

mH S H−⋅ S⋅ S 1−⋅ m⋅
= mH S 1−⋅ m⋅=

     What is the resulting maximized SNR?  Substitute this optimized choice for w back into the 
expression for γ and we get

Here's an interpretation: the conjugation of the mean value will "derotate" the mean value component 
of xi, making a real product; consequently those contributions to the sum add constructively, with no 
internal cancellations; meanwhile, the statistics of the noise components are unaffected by the 
conjugation of the weight.

d

1

N

i

mi


σ i( )2
xi⋅∑

=
=

and we form the sum

wopti

mi

σ i( )2
=

using the same arguments as in the earlier solution.  That is, the optimum weight vector has coefficients 

wopt S 1− m⋅=which is maximized with γ wH m⋅ mH⋅ w⋅

wT S⋅ w⋅
=

(b)  If the individual variances are different, then

γmax
mH m⋅

σ 2
=

and maximized SNRλ mH m⋅

σ 2
=withw c m⋅=The maximizing solution is

M m mH⋅=where M w⋅ λ σ 2⋅ w⋅=

and the eigenvalue problem
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