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1. Sum of Correlated Random Variables

() Denotethe samplespacingbyt, so x = (x(ts) x(2>{s) (I x(N>tS) )T

For N=5, its covariance matrix is

2 Rx(0)  Rylty Ru(2tg Rx(3ty RX(4>tS)('_j
g -
c Re(-t§  Rx(0) Ryt Rx(2tg Rx(3tg=
c=ebox) = SR(-24) Relt Ra® Rty Ref24g?
CRe(-Bts) Ru(-2td Ru(-t) Rx(0) Rty +
Re(-4t) Ry(-3t9 Ru(-2t) Re(-t) Rx(0) g

Matrices like this, in which all the elements of a diagonal are the same, are termed Toeplitz. Ours
also symmetric, a combination that has interesting and useful properties. In any case, if the
autocorrelation function is negligible after, say, two samples, then we have only five non-zero
diagonals, no matter how large N becomes:

2 Rx(0) Ryt Rx(2td 0 0 0
CRx(-t) Rx(0 Ryl Rx(2t) O 0
“Re(-2t) Rul-t) Rx(@  Ryltd Re(2t) 0
0 Ry(-2t) Ry(-ty Rx(0 Rty Rx(2tg
0 0 Ry(-2td Ry(-t§ Rx(0) Rglts) =
0 0 0 Ry(-2t Ry(-ty Rx(0) g
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b If y= eT>9< then the variance of y is

N
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If only the autocorrelation function is non-negligible only up to d samples, then

sy2 = NR(0) + (N - )Ry (ts) + (N - 1)Ry(-tg) ...
+(N - d)Ry(cbtg) + (N - d)sRy(- cbtg)

When N becomes very large, then

5,7 = NY{Ry(- dtg) + 1 + Ry(- tg + Rx(0) +Ry(ts) +1 +Ry(dtg)  (approx)

which is proportional to N.

2. Maximization of SNR

N
(&) To makeit concrete, use a=1. Then the mean valueitmg = é widm;  and
i=1
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Note that scaling all the weights by a common factor scales both the squared mean (the signal
power) and the noise variance by the square of that factor but leaves g unchanged. We can there
maximize g by maximizing its numerator with a constraint on its denominator, which we might as

set to s2. Using a Lagrange multiplier | , we maximize

B ol Y
J= ca wi>mi_: -1 s ﬁa (Wi) - 1[
e=1 [} e=1 u



There are afew ways to get at this. Here's a concise way, but I'll do the expanded version fur
below. Denote the column vectors of weights and means asw and m, respectively. Then

J= WT>m>mT>w- I >sz>(wT>w- 1)

Setting the gradient with respect to w to zero gives

RJ = 2mm’ s - 24 562w = 0 (note thisis a zero vector)

That is, we obtain an eigenvalue problem

2 T
M>xw = | > where M = m»m

The matrix M has rank equal to 1, since any vector w orthogonal to m produces zero when pre-
multiplied by M, and we can find N-1 linearly independent such vectors. Thusthere are N-1

eigenvalues of M that equal zero. Thereis only one non-zero eigenvalue, and its eigenvector is
proportional to m. So make w proportional to m. More simply, just observe that setting w=cm

. . . m >m
c>m>mT>m =cA >sz>m which we can satisfy with | = —

S

Substituting thisw into our definition of SNR g gives us

m >m . o .
Omax = = = (improves with increasing number of measurements
s m »m s N, provided means m;, don't go to zero)

Now back to the expanded version of the problem. Using the definition of J on the previous ¢
form each of the partial derivativesin turn (thisis equivalent to the gradient, of course):

d & 0 2
d—J: 2>@a wipsmmy - 2% s wqp = 0
W C =
L oa=1 2
d & 0 2
d—J = 2>§a Wi My - 2% 56 “wp = 0 and so on.
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Thisisaset of linear equation in the wi, so collect terms and write them neatly

E(ml)2 - >sac>wl + mexmpvo +a +a +mppimpwvy = 0

mpXmpXvq + E(mg)2 - >sac>w2 +a+ 0 +mpm2lxwvy = 0

MPMNXV] + meXnn>vo + o+ + E(mN)Z - >SZC>WN =0

or in matrix form

(M - >sz>4)>w =0 where M = m>mT

Again, recognize this as an eigenvalue problem and reason it through the same way to obtain the
weights as

wi=m for i=1.N

We now know that the weights should be proportional to the mean values. Thisisavery
important result, and it sets the scene for matched filters, antenna arrays and many other statistice
problems involving maximization of SNR. For a solution in which the variables are complex,
instead of real, seethe Appendix .

(b) If the noise variances are not al the same, the problem is a little tougher, but the principles ar
same. We form

We can transform it back to the problem in part (&) ssimply by scaling each of the variables; doing
loses no information, since the signal and noise in each variable are scaled by the same amount. L
_ X m
Vi= s;  Whichhasunit variance and mean bj = —
Si

From the results of part (a), we would multiply the v; variables by weights proportional to b;. Th:
equivalent to multiplying the original x; variables by weights



We can obtain the same result with matrix notation. The SNR is now
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= where S= diag(slz,u..u..sNz)
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Using a Lagrange multiplier, we maximize
J= WT>m>mT>w- I >‘(WT>S>W- 1) = WT>m>mT>w- I >(WT>S>S>W- 1)

) ) ) ) . 2
in which the noise covariance matrix is factored to become S= S, where

S= diag(sl,sz..u..sN)

Make a chage of variables u= Sxw w=S 1>u and rewrite J as

J=us bmm' s bu- >(uT>u - 1) = u b - | >(uT>u - 1)
where b=S" bm

Now it isjust like the problem in part (a). The optimizing choice makes the transformed weig
vector u proportional to b. Then

-1 . -1 -
Ugpt = S M and transforming back, Wopt =S “Ugpt = S 1>m

In other words, the optimum weight vector has coefficients

Wopt, = ———



Thisis another very useful result, especially for coloured noise, time varying noise or different no
levels on several different measurements.

What is the resulting maximized SNR? Substitute this optimized choice for w back into the
expression for g and we get

T T T .1 )2
_ Wopt AP MWopt ~ {m >8 m

T -1
=m XS 7n

WoptT >6W0pt mT >S_ 1>S>S_ 1>fn
Again, seethe Appendix for a solution when the variables are complex.

3. Operation at Threshold

In PCM, operation at threshold is clearly attractive. If you are at threshold, consider the effec
departing fromit. First, if you are concerned with selecting the transmit power when the bandwic
fixed, then increasing the power beyond the threshold point yields no improvement in output SNF
On the other hand, if selecting bandwidth is the question when the power is fixed, then increasing
bits per sample decreases the energy per bit and increases the BER, thereby degrading output SN
but decreasing the number of bits gives more quantization noise. However, note that we don't al\
operate at threshold; in some cases, threshold might involve a huge number of bits per sample, so
are content to operate into the saturation region, provided that the number of bits is sufficient for
output SNR.

In FM, it is dlightly less clear, but again consider departures from threshold. If the transmit pc
is fixed, and you increase the modulation index, then the channel bandwidth and the total noise
increases, causing below threshold operation and rapidly decreasing output SNR; yet decreasing t
modulation index reduces the total noise in proportion but the differentiation gain by the square.
way, you lose. On the other hand, if the modulation index (hence bandwidth) is fixed, and you
increase the transmit power, you gain only a proportional increase in output SNR; not a kick in tf
head, but alittle disappointing.

4. A Repeater Chain
To tackle this problem, I'll set up some definitions that are common to FM and PCM:

amp output noise PSD signal bandwidth
signal power

1 6

Po:=10 walt Ng:= 240 OwatttHz  B:=10° Hz



total length # of repeaters length of links

D:=150 km M d(M) ;:%

cable loss function

IR

0.1
Lo:=20 dB/km L(x) :=10 power loss, natural units, not dB

Transmission by FM

There are M amplifiers, each with a gain adjusted to compensate for the loss L(X) in the precec
cable section. The noise accumulates, and is proportional to the number of amplifiers traversed.
overall noise PSD (at the input of the last amplifier) is MNy/2.

The overall C/N at the final amp must be over 10 dB (note that thisratio is carrier power to nc
power in the transmission bandwidth); that is,

P
E: 0 310
N

L (d(M))NeM>Bc

Solve this for channel bandwidth as a function of the number of repeaters

Po
L (d(M))NgM0

Bc(M) =

and for the modulation index (Carson's rule)

Bc(M) ]
2>B

b(M) :=

Finally, the output SNR (assuming threshold and 3s loading):

P
SNRg = §>G>b2 where, at the last amp, G= L(d(M))?N B
(0}

Substituting this expression for G,



P B
0] >(_C 2 1O>Q>(b 1)

SNRO:Ev ) ——><lO >b =
3 L(d(M))NMB Bg 3

and since b depends on the number of amps M:

SNR,(M) := 2—;>(b(M) +1)b (M)?

We can maximize this simply by maximizing b with respect to M. Referring to the expression for
we see that we must maximize B, which we can do by minimizing its denominator; so find M thal
minimizes

0.1&0% -
ML (d(M)) = MxL0 = Moexp80.14 4n (10 i~
e 2

Treat M as continuous and set the derivative to zero:

) e 5
exp@B. 1 AN(10)22 - Moexp@8. 14 A0 (10)2- 30,14 AN (10)x=- = 0
e Mg e Mg M2

which gives the optimum M as

Mopt := 0.14n(10)>L D Mopt = 690.776
Thisisalot of amps! They're every d(Mopt) =0.217 km
Moreover, the output SNR is ridiculous SNRO(MOpt) = 0.975

Why did it turn out like this? Well, whenever you look for an optimum, you have to be clear
the phenomena involved. In our case, if we have too few amps, then the links are too long and tr
signal receive at the final amp is poor. If there are too many amps, then the accumulated noise is
high. Check what happens as M varies (next page):



M :=100,200.. 1000

M = b(M) = SNRp(M) =

100 -0.975 0.158 Negative b for M<400?7? It simply
200 -0.605 0.964 means that the signal is so weak that to
300 -0.167 0.154 stay over threshold requires a channel
400 0.111 0.092 bandwidth lower than that of the signal
500 0.256 0.548 itself. Clearly impossible.
600 0.318 0.886
700 0.331 0.974
800 0.318 0.887
900 0.289 0.72

1-103 0.253 0.535

Transmission by PCM

For any M, we get the distance, hence the SNR at the input to aregenerator. Thetrick isto
obtain the corresponding number of bits so it operates at threshold (defined asa 1 dB drop). Eas
approximate it with the overbound on the Q function.

P
First, get the SNR at each repeater G(M) := °
L (d(M))NoB
then approximate the Q functionto give ~ Pg = QC E-Z = E>expr&—GQ (approximately)
ng 2 e2ng

To apply the threshold condition, note that a 1 dB drop means that the transmission error termis
of the quantization error term, so that

2>ﬂ_ 1 1
Ar— P = = 2n
22>ﬂ

At the end of our chain of M repeaters, approximate the overall BER as M times the BER on eacl
link and the threshold condition becomes

2

_ e
7 2N 2 16MP, = e SO

N

e 2n g

Taking the logarithm and simplifying to form a quadratic equation in n, we obtain



n2+b>n+c: 0

where

_ In(8M)

b(M) := c(my := M

24n(2) 4An(2)

so the number of bits required for threshold operation with M repeaters is the solution of the qua

“b(M) +4 b(M)Z - (M)
2

n(M) := Note that only the positive root has meaning

Finally, the output SNR is simple if we assume operation at threshold:

SNRo(M) := 1, ! (recall 3s loading)

1,250 2N(M)

In principle, there is an optimum value for M, as there was in FM, athough establishing the fa
requires tracing through some cumbersome limits as M becomes very large. However, that optinr
occurs with a huge number of repeaters, aridiculoudly large number of bits per sample and a truly
amazing output SNR. In practice, as we see in the tables below, we don't bother to approach this
point, and we can safely work in the region where SNR, increases with M. Some test values:

M :=100,125.. 300

M = dM) = G(M) = n(M) = SNRo(M) =
100 1.5 50 2.472 8.212
125 1.2 199.054 6.34 1.751-103
150 1 500 11.113 1.308:106
175 0.857 965.349 16.229 1.573-109
200 0.75 1.581.103 21.367 1.951.1012
225 0.667 2.321-103 26.354 1.963-10 15
250 0.6 3.155.103 31.102 1.416-10 18
275 0.545 4.056-103 35.571 6.947-10 20
300 0.5 5.103 39.752 2.285.10 23

We see that 60 dB SNR, is achievable with 150 amps (1 km spacing) and 11 or 12 bit linear
quantization. A striking contrast to FM!
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The reason why there is an optimum point, instead of a constant improvement? If there are to
repeaters, then the signal level istoo weak and the BER istoo high. On the other hand, if the nur
of repeaters is monstroudly huge (with 1 centimetre spacing, say), then there is no appreciable cal
loss, and the individual link BER is determined by the 10 watt received power. At this point, incr
the number of amps smply increases the accumulated BER at the end of the chain, and the optir
number of bits begins to decrease again - but it's a very shallow curve

APPENDIX TO QUESTION 2:
SNR MAXIMIZATION WHEN THE VARIABLES ARE COMPLEX

We form the inner product of the weight vector and the measurements as follows

d:wH>9<

where the superscript H denotes conjugate transpose. The only difference from the earlier formu
is the conjugate on the weights.

() If the variances are the same, we have

N
mg = w Hm sd2 = SZXé (|wi|)2 = 52w
i=1
2
To maximize g = (|md|2) wemaximize 3= w smsm T - | ><52>(WH>W- 1)
Sd

The gradient requires a little more care, since J is not analytic. Y ou could differentiate with respe
the real and imaginary parts separately, or use

7 7
w=1 d—yW:l d—yWZO d—W:O

d
dw dw dw dw
where the overhead bar denotes conjugation in Mathcad. Either way, you get

I = 2mem w - 24 >sz>w =0
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and the eigenvalue problem

Mxw = | >sz>w where M = m>mH
mm
The maximizing solutionis w = cxn with | = 5 and maximized SNR
S
H
. m >m
Omax = >
S
(b) If theindividual variances are different, then
wmsmMw
g= —————  whichis madmizedwith wop = S Ln
w XSV

using the same arguments as in the earlier solution. That is, the optimum weight vector has coeff

_m
Wopt; = 735
(si)
and we form the sum

7.
m

N
d= 2 — X
21 (Si)2

Here's an interpretation: the conjugation of the mean value will "derotate” the mean value compol
of x;, making areal product; consequently those contributions to the sum add constructively, witl
internal cancellations; meanwhile, the statistics of the noise components are unaffected by the
conjugation of the weight.

What is the resulting maximized SNR? Substitute this optimized choice for w back into the
expression for g and we get

T s’ He 1. )2
_ Wopt Anm Wopt m >S5S m —mH>S_ 1>m

woptT>S>w0pt ms Mes bm

since Sis symmetric.
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