
The conditional pdfs 
do not depend on the 
prior probabilities.
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Binary antipodal signals form a one-dimensional constellation, so r, s1 and s2 are scalars.

(a)  The signals  s1 = +sqrt(Eb) and s2 = -sqrt(Eb) form the means of the two conditional pdfs.  They 
both have variance No/2, so the conditional pdfs are 
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Now assign some arbitrary prior probabilities P1 0.1:= P2 1 P1−:=

The joint probabilities and the marginal probability are 

prs1 r s1,( ) P1 p1 r( )⋅:= prs2 r s2,( ) P2 p2 r( )⋅:= pr r( ) prs1 r s1,( ) prs2 r s2,( )+:=
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(b)  The decision boundary is located where the joint probabilities are equal.  From page 5.3.7 of the 
notes, this requires the threshold r to satisfy

s1 r⋅
No

2
ln P1( )⋅+ s2 r⋅

No

2
ln P2( )⋅+= since the signals have equal power

or, scaling the threshold by the signal amplitude,
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The boundary is a function of the prior probability ratio and, if the probabilities are unequal, it also 
depends on the SNR.  Large disparity between the priors can even shift the boundary beyond one of 
the signal amplitudes.

(c)  The conditional error probabilities are depend on the distance to the threshold, measured in 
standard deviations
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Note that the Q function is greater than 1/2 for negative arguments, and approaches 1 as the argument 
approaches -∞.  Consequently, one of the conditional error probabilities can approach 1 for extreme 
disparity between the prior probability.  The average error probability is

Pb Pr errors1( ) P1⋅ Pr errors2( ) P2⋅+=
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2.  Translation of Signal Constellations

We noted in class the similarity of average energy with moment of inertia.  Both are minimized by 
locating the centroid (the centre of mass) at the origin (the centre of rotation).  The simplest proof is to 
consider a constellation that is already centred on the origin with average energy Es.  From page 5.4.2 
of the notes, translation by a vector l produces new energy

E's Es l( )2+ 2 l
T

⋅ sc⋅+= Es l( )2+=

Thus the new energy is greater than the old, increasing with increasing distance, irrespective of 
direction, and centreing the constellation minimizes the energy.

3.  Union Bound

     The sketch below shows that the decision regions are the quadrants.  Each signal is a distance Es

 from the origin, and has components along each axis of  Eb      since Es 2 Eb⋅=
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(a)  Define E1 as the event that noise carries the received vector to the wrong side (the left side) of 
boundary 1, similarly for E2.  The probability of a symbol error is upper bounded by

Pr E1 ∪ E2( ) Pr E1( ) Pr E2( )+≤ 2 Q 2 γb⋅( )⋅=

since the distance to the decision boundaries, measured in standard devations, is 
2

No
Eb⋅

(b)  The probability of E1 is the probability that the received r lies in the left half plane and for E1 it's 
the lower half plane.  Consequently, Region 3 is counted twice.  That's why it is an upper bound on 
the probability of the union.  It is exact only if the events are mutually exclusive, so their regions do not 
overlap.

     This constellation is easy to work with, since its decision regions are all rectangular (although 
semi-infinite).  Since the noise components are independent, 

Pr Region3( ) Q 2 γb⋅( )2
=

For most problems in which we resort to the union bound, it is virtually impossible to calculate the 
probabilities of overlap regions.  It's often hard even to describe what those regions are. 

(c)  To fix up the bound, we subtract the double counted region

Pr E1 ∪ E2( ) Pr E1( ) Pr E2( )+ Pr E1 ∩ E2( )−= 2 Q 2 γb⋅( )⋅ Q 2 γb⋅( )2
−=
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or 

Ps γb( ) 2 Q 2 γb⋅( )⋅ 1
1

2
Q 2 γb⋅( )⋅−


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⋅:= Pbound γb( ) 2 Q 2 γb⋅( )⋅:=

The second term in parentheses represents the relative effect of the correction, and it goes to zero 
with increasing SNR, meaning that the union bound becomes tight at high SNR.  Let's see it 
graphically:

γbdB 2− 1.9−, 5..:=
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rate that's good enough to use.

I won't bother sketching the 
probability surface.

(d)  If the events in question are the three pairwise error events, the boundaries are as shown
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v1hat t( ) 0:=
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⌠

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Project v1 onto u0Step 1:

1−
2

t≤
1

2
≤has unit energy over u0 t( ) 1:=Step 0:  Just normalize v0.

We can do G-S on them in any order, but I'll do it in the obvious way.

1−
2

t≤
1

2
≤for v2 t( ) t2=v1 t( ) t=v0 t( ) 1=

These three functions span the space:

4.  Gram-Schmidt

so the two forms of the union bound converge at higher SNR.  The superfluous term in the second 
form of the bound represents a point that is farther away by a factor sqrt(2), so its effect becomes 
negligible compared with that of the closer points as SNR increases.
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     The bound's second term in the parentheses decreases to zero quickly.  In fact the ratio can be 
approximated by use of the approximation to the Q function: 

It is looser than the earlier bound 2 Q 2 γb⋅( )⋅  because it uses a decision boundary in addition to the 

nearest ones, even though only the nearest ones really define the error.  That is, if it's over boundary 3, 
then it's over at least one of the other boundaries.
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or 

Ps P2 s2( ) P2 s3( )+ P2 s4( )+≤ Q 2 γb⋅( ) Q 4 γb⋅( )+ Q 2 γb⋅( )+=

This form of the union bound can be written
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so the next orthonormal basis function is obtained by normalizing e1:
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