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1.  How Important is a Matched Filter?

(a)  First, we'll do the matched filter receiver.  For this, we can simply set
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which also equals the energy per bit Eb .  The noise variance in the sample is
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     Next, we do the integrator receiver.  For this, we use
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The amplitude of the signal component of the integrator output is
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and the variance of the noise component is
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The effective SNR is less with the integrator, and the cost is a factor of
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(b)  Now for the related question in the frequency domain.  The transmitted pulse, in frequency, 
is
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or you could write it like this:
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     A matched filter receiver might use a unit dc gain version of the transmitted pulse to make it 
look like the sketch in the question paper:

G R f( ) rect f T.( )

The amplitude component in the filter output sample is (using Parseval's identity)
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and the noise variance of the filter output is
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    Now we turn to the receiver filter with sidelobes.  The signal component is unchanged, at 
µ A.  The noise variance is 
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which makes the BER
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The cost in effective SNR is a factor

1 2 d2. or, in dB 10 log 1 2 d2.. 10
ln 10( )

ln 1 2 d2.. 20 d2.
ln 10( )

where the last "equality" is an approximation based on small sidelobes.  Even if those sidelobes 
are only 10 dB down (d2=0.1), the SNR penalty is only

20
ln 10( )

0.1. 0.869= dB 

Depending on application, this may be a price well worth paying in order to use a simpler filter.  
For satellite applications, however, and particularly on the downlink, we would not willingly 
give up 1 dB.
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2.  Viterbi Receiver for FSK

(a)  The signal space is spanned by g1(t), g2(t) and their translates by multiples of T.  Since the 
two pulses are already orthogonal, we have an easy orthonormal basis set:
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Projection of r(t) in kT≤t≤(k+1)T onto the basis waveforms gives the vector
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and their negatives s 1 and s 2

(b)  The branches in the state diagram below are labeled "logic level/transmitted waveform".  
You can see that logic 0 causes g1 to be transmitted, thereby reversing the starting slope, and 
logic 1 causes g1 to be transmitted, so no slope change.  The trellis unrolls the state diagram.

state 0: 
start with positive slope

state 1: 
start with negative slope
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(c)  It's not necessary for your answer, but, just for completeness, I'll back up a little in the 
derivation.  Suppose we receive N symbols, and therefore r(k), k=1,,N .  Stack those length-2 
vectors into a complete received vector of length 2N

so r 2N s 2N n 2N

r 2N

r N( )

r N 1( )

r 2( )

r 1( )

with noise covariance C n2N
N o
2

I 2N.

      The ML criterion is written below with commas only because it's hard to write a conditional 
probability in Mathcad.   The expression for Cn2N has already been substituted in.
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We have now reduced it to a sum of N branch metrics.
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Next, we recognize that there is a one-to-one correspondence between signal sequences s2N and 
state sequences σN, and write the branch metrics as

µ r σ now, σ then, r s σ now σ then, 2

This expression, written out for each of the four transitions, is a perfectly good answer:

µ r 0, 0,( ) r s 2
2 µ r 1, 0,( ) r s 1

2

µ r 0, 1,( ) r s 1
2 µ r 1, 1,( ) r s 2

2

However, each one takes two subtractions (since two components), two squarings and an 
additions.  We can simplify it to reduce computation, and gain some insight in the process.  
First, expand the quadratic in the branch metric

µ r σ now, σ then, r( )2 2 rT. s σ now σ then,. s σ now σ then, 2

Drop the first term because it is common to all signals.  The third term is Eb, again common to 
all signals, so drop it, too.  Now we have a new expression for branch metric, one which we 
want to maximize, given by

µ r σ now, σ then, rT s σ now σ then,.

Now substitute the signals from part (a) s 1 E b
1

0
. s 2 E b

0

1
. to obtain

µ r 0, 0,( ) r 2 µ r 1, 0,( ) r 1
These require no computation 
at all, except for negation.

µ r 0, 1,( ) r 1 µ r 1, 1,( ) r 2

The metric for any overall sequence s2N (or σN) is just the correlation of the sequence with the 
receieved vector r2N, and this correlation equals the sum of the branch correlations.  Because 
the pulse shapes are orthogonal, each branch correlation in turn is just the the appropriate filter 
output, negated if necessary. 
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(d)  Inspection of the trellis shows that, unlike the AMI trellis, there are no branches that carry 
the same signal in a given symbol interval.  Thus the Euclidean distance between alternative 
paths increases with length of an error event, which decreases the probability of that event.  
Consequently the shortest error events are most likely.  They are of length 3 and are shown 
below.  By symmetry, there is no loss of generality in starting them at state 0 or choosing a 
particular path in each pair to be the "correct" one.

     There are two data bit errors in each of these events.  Now that I look at it more closely, I 
realize that I could have reduced it to a single bit error by reversed the labeling on the branches 
emanating from state 1; that is, state 1 to state 0 carries logic 0, and state 1 to state 1 carries 
logic 1.  Instead of associating a logical value with a frequency, I could have associated the 
value with whether the next pulse starts with positive slope.  Darn - cutting the error rate in half 
for free is always worthwhile.  On the other hand, my original labeling is at least resistant to an 
accidental reversal of the polarity of the signals (e.g., due to phase ambiguity in carrier recovery 
for bandpass signals, or simply getting wires reversed in installation).

     Anyway, take the left hand event above (they both have the same pairwise probability, so it 
doesn't matter) and note that the nominal correct state sequence is 0,0,1.  The received signals 
are then
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The pairwise probability of error is the probability that the metric of the true sequence minus the 
metric of the false sequence is negative, as developed in the following sequence of expressions:

Pr µ r 1( ) 0, 0,( ) µ r 2( ) 1, 0,( ) µ r 1( ) 1, 0,( ) µ r 2( ) 1, 1,( )( ) 0<( )

Pr r 2 1( ) r 1 2( ) r 1 1( ) r 2 2( ) 0<
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so, finally, the pairwise error probability is

P 2 Q
2 E b.

σν
Q 2 γb.

     The question didn't ask for it, but you can see that it is easy to calculate the asymptotic error 
rate (i.e., if only the shortest events are significant).  Each correct sequence has only a single 
incorrect counterpart, and they all have the same pairwise probabilities, so averaging over the 
correct sequences and counting two bit errors per event gives the BER

P b 2 Q 2 γb.. (again, I wish I had labeled differently, and eliminated the factor of 2)

      Let's compare with a detector that doesn't exploit memory, to see if the Viterbi effort is 
worthwhile.  The constellation is shown below, with the logic level shown in parentheses by 
each point.

This biorthogonal set is familiar.  A 
union bound on BER is good enough, 
for reasons you investigated in a 
previous assignment, so it's

P b 2 Q γb.

which is 3 dB worse than the Viterbi 
detector.  Yay!

This one could also benefit from the 
same relabeling as in Viterbi.  Just make 
-s1 and s2 carry a logic 1, and s1 and -s2 
carry a logic 0.  The factor of 2 in the 
BER is then eliminated.
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