
SIMON FRASER UNIVERSITY
School of Engineering Science

ENSC 428  Data Communications

Assignment 5                                                     Semester 01-1

1.  Linear Equalizer

(a)  Because three data bits are represented in each matched filter samples, we first have 
to determine which one we are trying to detect.  Recall that the impulse response is

x0 0.1 x1 1 x2 0.3

so that the samples are yk

0

2

i

ak i xi
.

=

νk

The strongest sample in x(k) is x1, and it exceeds the sum of absolute values of the other 
samples, so we'll use it to pick off the data.  That is, we use yk to determine ak-1.  

     To determine BER, note that the noise-free value of the samples (i.e., the expected 
values over the noise ensemble) depends on the data, so there are 8 possible values.  By 
symmetry, we can concern ourselves only with ak-1=1, reducing the noise-free values to 
the following:

ak ak-1 ak-2  yk 

where yk 0.1 ak
. ak 1 0.3 yk 2

. (no noise)
1

1

1

1

1

1

1

1

1

1

1

1

1.2

0.6

1.4

0.8

The BER depends on the data pattern.  Averaging over those patterns, we have

P b
1
4

Q
1.2

σ ν
Q

0.6

σ ν
Q

1.4

σ ν
Q

0.8

σ ν

.

Although the average sample value is 1, just as it would be without ISI, the Q function is 
strongly nonlinear, and the weak values do more harm than the strong values do good.  
So we lose performance if there is ISI.

1



(b)  One remedy is a simple linear equalizer; i.e., an FIR filter.  With 5 coefficients, its 
impulse response is wj, j=0..4 and its output at time k is  

0

4

j

wk yk j
.

=

w
T

y. where w

w0

w1

w2

w3

w4

y

yk

yk 1

yk 2

yk 3

yk 4

Now we need a compact expression for the components of y.  Since the oldes component, 
yk-4, depends on  ak-4  to  ak-6, y depends on 7 successive data values.  

yk

yk 1

yk 2

yk 3

yk 4

x0

0

0

0

0

x1

x0

0

0

0

x2

x1

x0

0

0

0

x2

x1

x0

0

0

0

x2

x1

x0

0

0

0

x2

x1

0

0

0

0

x2

ak

ak 1

ak 2

ak 3

ak 4

ak 5

ak 6

.

νk

νk 1

νk 2

νk 3

νk 4

or y X a. ν

     Which data symbol will we try to estimate with this equalizer?  Since yk-2 is in the 
centre, following the same logic as in part (a) says we should estimate ak-3.  No surprise - 
it's in the centre of the a vector.

     By now, you should not need a rederivation of the normal equations, but I'll throw it 
in, anyway.  You form the estimate

a'k 3 w
T

y. with error e a'k 3 ak 3 w
T

y. ak 3

You want to minimize, by choice of w, the error variance

σ e
2

E e2

2



Taking the gradient  and setting it to (vector) 0 gives

∇ w σ e
2

E 2 ∇ w e( ). e. 2 E y e.( ). 2 E y y
T. w. y ak 3

.. 0

Using R y E y y
T. p E y ak 3

. we have the normal equations R y w. p

Assuming i.i.d. data and noise samples uncorrelated with each other or the data, we 
determine 

R y E X a. ν( ) a
T

X
T. ν

T. X X
T. σ ν

2
I 5

. (5x5 identity matrix)

Expansion gives a bulky 5x5 matrix, of which the first 3 columns are

x0
2 x1

2 x2
2 σ ν

2

x1 x0
. x2 x1

.

x2 x0
.

0

0

x1 x0
. x2 x1

.

x0
2 x1

2 x2
2 σ ν

2

x1 x0
. x2 x1

.

x2 x0
.

0

x2 x0
.

x1 x0
. x2 x1

.

x0
2 x1

2 x2
2 σ ν

x1 x0
. x2 x1

.

x2 x0
.

and the last 2 are 

0

x2 x0
.

x1 x0
. x2 x1

.

x0
2 x1

2 x2
2 σ ν

2

x1 x0
. x2 x1

.

0

0

x2 x0
.

x1 x0
. x2 x1

.

x0
2 x1

2 x2
2 σ ν

2

3



Substitution of numerical values gives

R y

1.1 σ ν
2

0.2

0.03

0

0

0.2

1.1 σ ν
2

0.2

0.03

0

0.03

0.2

1.1 σ ν
2

0.2

0.03

0

0.03

0.2

1.1 σ ν
2

0.2

0

0

0.03

0.2

1.1 σ ν
2

Similarly, the p vector is given by

p E y ak 3
. X

0

0

0

1

0

0

0

.

0

x2

x1

x0

0

0

0.3

1

0.1

0

With a value for the noise variance, we could solve R y w. p  and obtain the equalizer 
coefficients that minimize the MSE in estimating ak-3.  To determine the resulting 
improvement, we would:

   *  calculate the new noise variance as

σ
2

σ ν
2

w
T. w.

*  calculate the signal amplitude for the 26=64 combinations of the 6 interfering bits 
(they  interfere a lot less than in part (a)!)

*  average the 64 Q function values.

4



2.  Carrier Recovery

     There are many ways to handle this problem, and I don't care which way you did it 
(unless it's hopelessly bad).  In these solutions, I have provided: 

*  the decision directed feedforward approach;
*  the decision directed loop;
*  the statistically optimum (but computationally intensive) solution.

  The first step is to read the data arrays.  They are pasted here, and you can scroll up or 
down with the mouse to see the full array.  The lines below convert them to complex 
format.
temp

0

1

2

3

4

5

6

0 1

2.33 0.12

-1.08 -1.43

1.27 1.81

1.37 -0.6

-1.83 -0.58

0.35 1.67

0.65 1.31

temp2

0

1

2

3

4

5

6

0 1

0 0

0 -1

-1 0

0 -1

-1 0

0 -1

1 0

matched filter output samples transmitted data (don't use!)

y temp 0< > j temp 1< >. a temp2 0< > j temp2 1< >.

N sym length y( ) 1 n0 0 N sym.. n1 1 N sym..

     A first look at the data suggests that we have a challenge ahead.  It seems to be all 
over the place.

2 0 2

2

2

Matched Filter Output Samples

5



     No matter which way we approach the problem, some procedures will be useful:

This decision function returns 
the constellation point nearest 
the complex input x (there are 
many ways to write this function).

decn x( ) exp j
π
2

. floor
2

π
arg x e

j
π

4
.

...

This one reduces an arbitrary 
angle θ to the range -π/4 to π/4, 
reflecting the four-fold ambiguity.

reduce θ( ) arg ej θ. decn ej θ..

The Feedforward Approach

     The feedforward approach was outlined in the lecture notes and is sketched below.

The memory of the tracker is the averager.  Many ways to average, but the simplest is a 
recursive averager - a first order lowpass, described variously by

vn 1 α( ) vn 1
. α un

. (vn is the ouput, un is the input)

V z( )
α z.

z 1 α( )
U z( ).

hn α 1 α( )
n.

dc gain = 1, time constant is about 1/α samples

6



     The tracker operation is captured in the following code.  One of the input parameters 
is the starting value of the averager state.  It returns an array with its first column equal to 
the averager output and second column equal to the b decisions.  

track y α, vstart,( ) bhat0 decn y0 vstart.

v0 1 α( ) vstart. α y0
. bhat0

.

bhatn decn yn vn 1
.

vn 1 α( ) vn 1
. α yn

. bhatn
.

n 1 N sym..∈for

augment v bhat,( )

Now we can use it on the samples.  Since we don't know anything about the phase to 
begin, we'll try the following:

vstart 0.001 α 0.04 (try different values and watch the results)

est track y α, vstart,( )

v est 0< > bhat est 1< > separate the returned values

ahatn1 bhatn1 bhatn1 1
. differentially decode

find the errors (overhead arrow means "do it to 
every component")

e ahat a( ) a.

7



The results are shown below.

0 0.5 1 1.5

1

0.5

Trajectory of Averager Output

Im vn0

Re vn0

This seems like a pretty 
reliable estimate.  It is growing 
in magnitude because of the 
small starting value, but 
magnitude doesn't matter.  The 
phase seems reasonably 
consistent.

α 0.04= vstart 1 10 3.=

0 10 20 30 40 50
1

0

1

2

Error Occurrences

sample number

Im en1

en1

n1

Errors occur in pairs, because an error in bhat affects two successive values of ahat.  The 
decisions are listed in the Appendix.

     Can we improve the tracker with a second pass, starting it where the first pass left off? 
 Let's try: 

α 0.01 est track y α, vN sym
, v est 0< > bhat est 1< >

ahatn1 bhatn1 bhatn1 1
.

e ahat a( ) a.

8



0 0.5 1 1.5

1

0.5

Trajectory of Averager Output

Im vn0

Re vn0

The estimate v is nicely stable.

α 0.01=

arg vN sym
0.317=

0 10 20 30 40 50
1

0

1

2

Error Occurrences

sample number

Im en1

en1

n1

     Too bad it didn't make any difference to the number of errors - but remember that 
even perfectly coherent detection produces errors.

The Tracking Loop

     Our next version is a loop.  Again, it comes directly from the lecture notes.  The 
sketch below shows that its memory is in the accumulator and the phase error detector 
(PED) delivers the imaginary part of y' after derotation by the decision bhat.  The 
rationale is that the mean PED output should be zero if θhat equals the true rotation θ, 
and that θhat should be adjusted in proportion to this mean value.  Since we don't have 
the mean value, we'll use the instantaneous value and rely on the loop time constant for 
the averaging.
     In contrast to the feedforward loop, the PLL is strongly nonlinear through the polar to 
rectangular conversion implicit in the exp(j *) function.  A linearized approximate 
analysis shows that it operates as a first order averager in θhat, with time constant in 
samples closely equal to (KcAy)-1, where Ay is the average value of  |y|.  It requires more 
computation than feedforward.

9



     The loop operation is captured in the following code.  One of the input parameters is 
the starting value of the phase estimate θhat stored in the accumulator.  The procedure 
returns an array with its first column equal to the estimated phase and second column 
equal to the b decisions.  

loop y K c, θhatstart, y' y0 exp j θhatstart.( ).

bhat0 decn y'( )

θhat0 θhatstart K c Im y' bhat0
..

y' yn exp j θhatn 1
..

bhatn decn y'( )

θhatn θhatn 1 K c Im y' bhatn
..

n 1 N sym..∈for

augment θhat bhat,( )

     Now we can use it on the samples.  Since we don't know anything about the phase to 
begin, we'll try the following:

θhatstart 0 K c 0.1 (try different values and watch the results)

10



est loop y K c, θhatstart,

θhat est 0< > bhat est 1< > separate the returned values

ahatn1 bhatn1 bhatn1 1
. differentially decode

find the errors (overhead arrow means "do it to 
every component")

e ahat a( ) a.

0 20 40 60

Trajectory of Phase Estimate

θhatn0

n0

The phase is creeping toward 
some value, but increasing Kc 
to speed it up also gives the 
estimate more jitter.

K c 0.1= θhatstart 0=

0 10 20 30 40 50
1

0

1

2

Error Occurrences

sample number

Im en1

en1

n1

     I wonder if a second pass, initialized with the phase estimate inherited from the end of 
the first pass, would improve things.  Reduce the time constant, too.  Try it.

11



θhatstart θhatN sym
K c 0.02 (try different values and watch the results)

est loop y K c, θhatstart,

θhat est 0< > bhat est 1< > separate the returned values

ahatn1 bhatn1 bhatn1 1
. differentially decode

find the errors (overhead arrow means "do it to 
every component")

e ahat a( ) a.

0 20 40 60

1

1

Trajectory of Phase Estimate

θhatn0

n0

It's pretty stable, but Kc is 
smaller than in first pass.  We 
can't make it too small (i.e., 
time constant too large), or we 
don't get much benefit from the 
second pass.

K c 0.02= θhatstart 0.411=

0 10 20 30 40 50
1

0

1

2

Error Occurrences

sample number

Im en1

en1

n1

The data decisions are listed in the Appendix.

12



     Comparison of the final values of the feedforward estimator and the loop shows they 
both work.

feedforward loop 

arg vN sym
0.317= θhatN sym

0.339=

but it's easier to fool the loop if θ initially puts the constellation points on decision 
boundaries.

     Finally, the SNR estimate.  First, get rid of the data modulation:

overhead arrow means "do it to every component", so u is an 
array of derotated samples, shown below.

u y bhat.

0 1 2 3

2

1

1

Im u n0( )

Re u n0( )

This represents the constellation 
point that is nominally on the 
positive real axis, rotated by θ 
and buried in noise. 

 The average value (centroid) is µ u mean u( ) µ u 1.416 0.413i=

and its length is 2 E s
. so E s

1
2

µ u
2. E s 1.088=

The real part and the imaginary part of u both have variance No, so

N o
1
2

1
N sym 1

.

0

N sym

i

ui µ u
2

=
N o 0.271=

E s
N o

4.018= E b 0.5 E s
.

E b
N o

2.009=

13



The Statistically Optimum Solution

     Both feedforward and the loop have the appearance of being ad hoc, approximate 
solutions.  They are.  Now let's see what the optimum solution is for a block of N 
symbols.  Refer to page Section 7.5 of the lecture notes.

     We have a length-N vector of samples r and a large number of candidate signal 
vectors si, i=1..M, each corresponding to a different vector b.  Large does mean large: for 
QPSK, M=4N.  We have the basic pdf

( ) ( )
| ,

1
( | , ) ( ) exp

(2 ) 2i

Hj j
i ij

i i N
o o

e e
p p e

N N

θ θ
θ

θ

 − − θ = − = −
 π
 

r s n

r s r s
r s r s

where superscript H denotes Hermitian transpose (conjugate transpose).  Expanding the 
exponent reveals factors that do not affect the decision

| ,

Re21
( | , ) exp exp

(2 ) 2i

HjH
is

i N
o o o

eNE
p

N N N

− θ

θ

   +   θ = −   π    
r s

s rr r
r s

since s i
H s i

. 2 N. E s
.

     We don't know θ, so we consider it a nuisance parameter, and form the marginal 
density by integrating it out:

2 2 2

| , | | , | ,
0 0 0

1
( | ) ( , | ) ( | , ) ( ) ( | , )

2i i i ii i i ip p d p p d p d
π π π

θ θ θ θ= θ θ = θ θ θ = θ θ
π∫ ∫ ∫r s r s r s r sr s r s r s r s

Substituting for the conditional density in the last equality above, ignoring the factors that 
do not affect the decision and integrating as in Section 7.5, we obtain

( )( ) ( )2

0
ˆ arg max | | arg maxH H

I I
i i

i I= =s r s r

This means that we should correlate the N-sample received vector with every possible 
transmitted sequence and select the correlation with the largest magnitude (or magnitude 
squared).  This could be a lot of work for long sequences.  However, for shorter blocks, 
such as 4 to 6 symbols, the method received a brief flurry of interest as multisymbol 
differential detection in the context of wireless communication.

14



APPENDIX: DATA DECISIONS

The feedforward and loop structures produce the same sequence of decisions.  The array 
is broken into a first half and a second half so they fit on one page.

ahatfirst submatrix ahat 0, 25, 0, 0,( ) ahatsecond submatrix ahat 26, 50, 0, 0,( )

ahatfirst

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

0

0

-1i

-1

-1i

-1

-1i

1

-1i

-1i

-1

-1

1i

-1i

-1

1

-1i

1i

1i

1

-1i

-1

1

1i

-1i

1i

-1i

= ahatsecond

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

0

1i

-1i

1

1

1

-1

1i

1

-1

-1

-1

1

1i

-1i

1i

1i

-1i

1i

-1

-1i

1

-1

1i

1i

1i

=

15


