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ENSC 428 Data Communications

Solutionsto Midterm Exam Semester 01-1

1. For convenience, define the rectangular pulse

rect(t) := |1 if O0<t<l

0 otherwise

The two pulse shapes are then

t . t t
sl(t)=A-rect(?) +A-sn(2-p-?) sz(t)=A-rect(?)

s, s,(!)
2A 2A

0 T

(a 3 marks). The amplest of the many possible non-orthogona bases of the spaceisjust s;(t)
and s,(t) themselves.

(b, 3 marks). From observation, the two terms comprising s;(t) are orthogona and one of them
ISs,(t). A direct route to an orthonorma basisis to normalize the components. This gives

2 . t 1 t
y 1(t) ==£-Sn(2-p-?) y 2(1) ::F.rect(?)

T
V2 1
snce s'n(z-p?) dt=E (sketch it and see)

/0



A more difficult way to get an orthonorma basisisto gpply the Gram-Schmidt procedure.
Hereit's best to start with sy(t). Starting with s,(t) istoo horrible to contemplate, athough it
eventudly gives adifferent, and equally correct, result  So, normaizing s,(t) gives

1 t
y o(t) = —rect(?)

ﬁ

Project s;(t) onto the s,(t) subspace to get the gpproximation

T

S 1hat(D=Yy 2(0'{ s1()y o(t)dt
/0

-l el

T

This leaves the error
) t
e1(h=sq(t) - Slhat(t)=A'S”(2'p';) for  O<t<T

Normalization gives the next orthonormal basis function

y i()=— = 1|Z.dn[2

e1(t) 2 .
norm(el(t)) T (

t
'p?) for  0<t<T

which are the same ones we obtained by inspection.

(c, 3marks) The sgnd congelation is obtained by caculating the coefficients of the sgnas with
respect to the orthonoma basis. The various possible orthormal bases are dl related by

rotation and/or reflection, so the sameis true of the resulting congtdlations. The one below uses
the basis from part (b).

s1(t)=A. E-y LD ATy o) sp(=A4Ty ot



.% As a check, the energies of the
two sgnals (squared lengths) are

%
AT * .2
3 .2
Eq1=—A"T
172
E o= =AZT
N A which agree with integrations of

\ A ft'-/? w the Sgnas s (t) and sx(t).

(d, 3marks) Here's one possible two-correlator receiver
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An equaly satisfactory recelver corrdates againgt the basis functionsy 1(t) and y ,(t) to produce
the componentsr, and r4 of the received vector r. The vector is delivered to aMAP receiver
that does

E.

i - ?I) or (from the congellation)  son

T A
argmax ;| S rl—z- —
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(e, 4 marks). Here'saone-correlator receiver. Likethe two-correator equivaent, an
dternative correlates against anormalized verson, which happensto bey 5(t).

: t="
rk ai
i, S
3,4)- S,/t) AT
= AT &)

(f, 4 marks) With adecison boundary, the received space looks like this:

%, ‘! —— boonﬂfal‘“{
e
AYT + 4 L4 2
- d —> They , dimendonisirrdevant to
&, &, the decision.
;
\ ATE ¥

The sgnals are separated by d=A-\/§

The noise variance on each component is N, according to the question. It should have been

No/2 - an unfortunate error on an exam sheet, so ether choice was accepted in the grading.
WithN,/2, the probability of bit error is

d

2 d’z)
Pha=Q————(=Q|— |—
b= noise std dev Q 2 INg



2. (10 marks) Sincetheinput is Sationary, o is the ouput, and the sampling time isirrdlevant.
Simultaneity of the samples isimportant, because we want the correlation coefficientr. You
can get at the variances and correation coefficient in the time domain, through autocorre ation,
or the frequency domain, through power spectrum.

In the time domain, follow the line set out in the section on Projection (notes 2.5.4 to 2.5.6).
From this,
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In the frequency domain, we can get the variances and covariance by

No [* 2 No [* 2
; 12=—-J | 406 ) s 22=—-J 'S 2h) )
2 2
-¥ -¥
¥
) N 0 -
s 127=— S 1(f)-S 5(f) df
-¥

When you see painful integras like this, you ask if Parseval can hdpyou. Hecan. The
time-domain equivalent of those frequency-domain inner productsis much easier. Infact, it's
just what we did further up the page. Of course, some other problem might be easier in the
frequency domain.



3. (10 marks) IsMAP detection equivaent to use of thejoint pdf in -~ argmax p, ((r,s) 7

Start with the MAP criterion. Itis argmax Py (§]r) not argmax P (1 1S)

The latter isthe ML criterion, suitable when the a priori distribution of s is uniform or unknown.
The MAP criterion isrelated to the joint pdf by
argfnax P s(rs)= argrinax Py (sIr)p.(r)
But p,(r) iscommon todl thesgna dternatives, so it makes no difference to the outcome.
Hence
argmax p, ,(r,§ ) = argmax p,, (S| 1)

and maximization of thejoint pdf is equivaent to aMAP decison. Of course, it is not
equivaent to ML decisions, except if the prior digtribution is uniform. Note dso that the
equivaence does not depend on asignal space or Gaussan noise - it isagenerd property of
detigtica decison making.

4. The vector diagram below summarizes the Stuation. The random varigbles have "lengths’
equa to their standard deviations and an included angle q that satisfies cog(q)=r .

cos (8) =/0

(a 7maks) Theerror is determined by the right triangle with hypotenuse of length s 2.
Therefore the "length” of the error is



s g=s 2:9n(q)=s 2-4/1— COS(q)2=s oA l- r2

and the mean squared error is

s ez=s 22-(1— rz)

Another way of getting the same result isto go through the gpproximation step by step, rather
like the G-S process. Start by normaizing X, to a unit vector

X
1 . .
U 1=— has unit sandard deviation
51

Then the MM SE gpproximation of X, is

X o,—|——=s 2:008(q) —=r — X 1

X opgt=(X 2.U 1)U 1=
ohat=(X 2:U 1)U 1 s1/51 ST 51

Xl)xl X1 s

with error

Eo=X2-X oha

with variance
s &=E(E 2)=E[ (X 2- X zhat)z}=E(X 22) - 2E(X X o) + E(X 2hat2)

52 522 52 822 -

1=s 22— 2 -S—l-s 212+r2- 5'S 12=s 22— 2 -S—l-r 'S 1's 2+ r2. 58 1°
s1 s1

1=s 22-(1 —r?)

(b, 3marks) Implicitly, we congtrained the estimate to be linear, and minimized the MSE in that
context. The caculations use only 2nd order gatistics, not the underlying pdfs. Consequently,
they apply to any random variables with finite variances. That isthe answver | wanted. Not
shown in class was the fact that the uncongtrained estimate that minimizes MSE isthe
conditional mean. In generd, thisisanonlinear function of X4, but, if the variates are Gaussan,
then the conditional mean is the linear MM SE estimate, so the procedure above is optimum.



