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1.  For convenience, define the rectangular pulse  

rect t( ) 1 0 t 1if

0 otherwise

The two pulse shapes are then

s 1 t( ) A rect
t

T
. A sin 2 π.

t

T
.. s 2 t( ) A rect

t

T
.

A

2A

0 T

s1(t)

A

0 T

2A

s2(t)

(a, 3 marks).  The simplest of the many possible non-orthogonal bases of the space is just s1(t) 
and s2(t) themselves.

(b, 3 marks).  From observation, the two terms comprising s1(t) are orthogonal and one of them 
is s2(t).  A direct route to an orthonormal basis is to normalize the components.  This gives
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A more difficult way to get an orthonormal basis is to apply the Gram-Schmidt procedure.  
Here it's best to start with s2(t).  Starting with s1(t) is too horrible to contemplate, although it 
eventually gives a different, and equally correct, result   So, normalizing s2(t) gives
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Project s1(t) onto the s2(t) subspace to get the approximation
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This leaves the error
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Normalization gives the next orthonormal basis function
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which are the same ones we obtained by inspection.

(c, 3 marks) The signal constellation is obtained by calculating the coefficients of the signals with 
respect to the orthonomal basis.  The various possible orthormal bases are all related by 
rotation and/or reflection, so the same is true of the resulting constellations.  The one below uses 
the basis from part (b).
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As a check, the energies of the 
two signals (squared lengths) are
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which agree with integrations of 
the signals s1(t) and s2(t).  

(d, 3 marks)  Here's one possible two-correlator receiver 

An equally satisfactory receiver correlates against the basis functions ψ1(t) and ψ2(t) to produce 
the components r1 and r1 of the received vector r.  The vector is delivered to a MAP receiver 
that does
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(e, 4 marks).  Here's a one-correlator receiver.  Like the two-correlator equivalent, an 
alternative correlates against a normalized version, which happens to be ψ2(t).  

(f, 4 marks)  With a decision boundary, the received space looks like this:  

The ψ2 dimension is irrelevant to 
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The noise variance on each component is No, according to the question.  It should have been 
No/2 - an unfortunate error on an exam sheet, so either choice was accepted in the grading.  
With No/2, the probability of bit error is
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2.  (10 marks)  Since the input is stationary, so is the ouput, and the sampling time is irrelevant.  
Simultaneity of the samples is important, because we want the correlation coefficient ρ.  You 
can get at the variances and correlation coefficient in the time domain, through autocorrelation, 
or the frequency domain, through power spectrum.

In the time domain, follow the line set out in the section on Projection (notes 2.5.4 to 2.5.6).  
From this,
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In the frequency domain, we can get the variances and covariance by
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When you see painful integrals like this, you ask if Parseval can help you.  He can.  The 
time-domain equivalent of those frequency-domain inner products is much easier.  In fact, it's 
just what we did further up the page.  Of course, some other problem might be easier in the 
frequency domain.
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The latter is the ML criterion, suitable when the a priori distribution of si is uniform or unknown.

The MAP criterion is related to the joint pdf by
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and maximization of the joint pdf is equivalent to a MAP decision.  Of course, it is not 
equivalent to ML decisions, except if the prior distribution is uniform.  Note also that the 
equivalence does not depend on a signal space or Gaussian noise - it is a general property of 
statistical decision making.

4.  The vector diagram below summarizes the situation.  The random variables have "lengths" 
equal to their standard deviations and an included angle θ that satisfies cos(θ)=ρ.

(a, 7 marks)  The error is determined by the right triangle with hypotenuse of length σ2.  
Therefore the "length" of the error is
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and the mean squared error is
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Another way of getting the same result is to go through the approximation step by step, rather 
like the G-S process.  Start by normalizing X1 to a unit vector
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(b, 3 marks)  Implicitly, we constrained the estimate to be linear, and minimized the MSE in that 
context.  The calculations use only 2nd order statistics, not the underlying pdfs.  Consequently, 
they apply to any random variables with finite variances.  That is the answer I wanted.  Not 
shown in class was the fact that the unconstrained estimate that minimizes MSE is the 
conditional mean.  In general, this is a nonlinear function of X1, but, if the variates are Gaussian, 
then the conditional mean is the linear MMSE estimate, so the procedure above is optimum.


