2.2 Gaussian pdf

- A pdf of enormous importance
- characterized completely by $1^{\text {st }}$ 年年 order moments
- central limit theorem: sums of identically. distributed rvs have a pdf that looks increasingly Gaussian as number increases [A Papoulis, Probability Random Variables and Stochastic Processes, Mc Grow Hill 1984]
- maximum entropy
- many, many other properties
- scalar $f_{\alpha}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{x-m}{\sigma}\right)^{2}}$

Aside: note $\int_{-\infty}^{\infty} \operatorname{epp}\left(-\frac{1}{2}\left(\frac{x-m}{\sigma}\right)^{2}\right) d x=\sqrt{2 \pi} \sigma$. resp of m
Area under the tail of zero mean, unit var Gaussian:

$$
\begin{aligned}
& f_{x}(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \\
& Q(x)=1-F_{x}(x)=\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} e^{-\alpha^{2} / 2} d x
\end{aligned}
$$

Hence these areas

are each

$$
Q\left(\frac{d}{\sigma}\right)
$$

- bivariate Gaussian: suppose x, y have own variances and are not independent. From P+S $p 158$

$$
\begin{gathered}
f_{x y}(x, y)=\frac{1}{2 \pi \sigma_{x} \sigma_{y} \sqrt{1-p^{2}}} \exp \left\{-\frac{1}{2\left(1-p^{2}\right)}\left[\left(\frac{x-m_{x}}{\sigma_{x}}\right)^{2}+\left(\frac{y-m_{y}}{\sigma_{y}}\right)^{2} \cdots\right.\right. \\
\left.\left.\ldots-2 p\left(\frac{x-m_{x}}{\sigma_{x}}\right)\left(\frac{y-m_{y}}{\sigma_{y}}\right)\right]\right\}
\end{gathered}
$$

- multivariate Gaussian $\underline{x}=\left(x_{1}, x_{2}, \cdots x_{N}\right)^{\top}$

$$
f_{\underline{x}}(\underline{x})=\frac{1}{\sqrt{(2 \pi)^{N}|C|}} \exp \left\{-\frac{1}{2}(\underline{x}-\underline{m})^{\top} C^{-1}(\underline{x}-\underline{m})\right\}
$$

Is this the same as bi variate Gaussian for $N=2$?

$$
C=\left[\begin{array}{cc}
\sigma_{1}^{2} & \sigma_{12}^{2} \\
\sigma_{12}^{2} & \sigma_{2}^{2}
\end{array}\right]=\sigma_{1} \sigma_{2}\left[\begin{array}{cc}
\sigma_{1} / \sigma_{2} & \rho \\
\rho & \sigma_{2} / \sigma_{1}
\end{array}\right]
$$

Gaussian with covariance matrix $\quad \mathbf{C}=\left[\begin{array}{cc}1 & 0 \\ 0 & 0.5\end{array}\right]$

$$
\text { so } \quad \rho=0
$$

p side views (parallel to axes):

Gaussian with covariance matrix $\quad \mathbf{C}=\left[\begin{array}{cc}1 & 0.25 \\ 0.25 & 0.5\end{array}\right] \quad$ so $\quad \rho=0.354$

p
p side views (parallel to axes):

- Occasionally, you need higher order moments of Gaussian r.V.s. If $x_{1}, x_{2}, \cdots x_{N}$ are jointly Gaussian, zero mean [Jmubzencraft and IM Jacobs, Principles of Communication Engineering John Wiley 1965, problem 3.13]

$$
\overline{x_{i_{1}} x_{i_{2}} \cdots x_{i_{L}}}= \begin{cases}0, & L \text { odd } \\ \left.\sum_{\substack{ \\\text { alldistrict } \\ \text { pairs of subscripts }}} \sigma_{j, j 2}^{2} \sigma_{j, j 4}^{2} \cdots \sigma_{j-1, j L}^{2}\right] & L \text { even }\end{cases}
$$

examples:

$$
\begin{aligned}
& \frac{1 x_{1} x_{3} x_{4}}{x_{1}}=\sigma_{12}^{2} \sigma_{34}^{2}+\sigma_{13}^{2} \sigma_{24}^{2}+\sigma_{14}^{2} \sigma_{23}^{2} \\
& \frac{x_{1} x_{2} x_{3}}{}=0
\end{aligned}
$$

If a variable is repeated, treat each occurrence as diokict

$$
\begin{aligned}
& \overline{x_{1}^{2} x_{2} x_{3}}=\sigma_{11}^{2} \sigma_{23}^{2}+\sigma_{12}^{2} \sigma_{13}^{2}+\sigma_{13}^{2} \sigma_{12}^{2}=\sigma_{11}^{2} \sigma_{23}^{2}+2 \sigma_{12}^{2} \sigma_{13}^{2} \\
& \overline{x_{1}^{4}}=3 \sigma_{11}^{2}=3 \sigma_{1}^{2}
\end{aligned}
$$

For complex Gaussian rvs, see
WW. McGee

- Linear transformateins of Gaussian rv's are still Gaussian. If

$$
f_{\underline{x}}(\underline{x})=\frac{1}{\sqrt{(2 \pi)^{N}|c|}} \exp \left(-\frac{1}{2}(\underline{x}-\underline{m})^{\top} C^{-1}(x-m)\right)
$$

and

$$
\underline{v}=A \underline{x}+\underline{b}, \quad \underline{x}=A^{-1}(\underline{v}-\underline{b}), \quad d \underline{x}=\underbrace{\left|A^{-1}\right|}_{\text {Jacobian }} d \underline{v}=\frac{d \underline{v}}{|A|}
$$

then $f_{\underline{x}}(x) d x$ becomes

$$
\begin{aligned}
f_{\underline{v}}(\underline{v}) d v & =\frac{1}{\sqrt{(2 \pi)^{N}|C|}} \exp \left(-\frac{1}{2}\left(A^{-1}(\underline{v}-\underline{b})-\underline{m}\right)^{\top} C^{-1}\left(A^{-1}(\underline{x}-\underline{b})-\underline{m}\right)\right) \frac{d \underline{x}}{|A|} \\
& =\frac{1}{\sqrt{(2 \pi)^{N}|A|^{2}|C|}} \exp \left\{-\frac{1}{2}(\underline{v}-\underline{b}-A \underline{m})^{\top} A^{-\top} C^{-1} A^{-1}(\underline{v}-\underline{b}-A \underline{m})\right\} d v \\
& =\frac{1}{\sqrt{(2 \pi)^{N}\left|C_{v}\right|}} \exp \left\{-\frac{1}{2}\left(\underline{v}-\underline{m_{v}}\right)^{\top} C_{v}^{-1}\left(\underline{v}-\underline{m_{v}}\right)\right\} d \underline{v}
\end{aligned}
$$

where $\underline{m}_{v}=A \underline{m}+\underline{b}, C_{v}=A C A^{\top}$

