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m 0 M 1−..:=For the signals themselves, we'll choose the M 3:=  simplex set:

ψ 1
T ψ 0⋅ 0( )=ψ 1

T ψ 1⋅ 1( )=ψ 0
T ψ 0⋅ 1( )=

Are they orthonormal?  A check shows that they are:

ψ 1k

1

8
sin 2 π⋅ k

K
⋅


⋅:=ψ 0k

1

8
cos 2 π⋅ k

K
⋅


⋅:=

k 0 K 1−..:=

     To keep things manageable, keep the number of dimensions to M 2:=  and, for convenience, 
assume that the basis functions are cosine and sine:

     As a first step, we'll define the transmitted signals.  In order to mimic the DSP-based modem 
view of the world, assume that the signals are discrete-time.  In this example, we'll use K 16:=  
samples across the pulse; that's more than enough, but it does make it easier to visualize.

Define the Signals

     This note illustrates two equivalent forms of receive modem for one-shot (i.e., isolated) pulses and 
demonstrates that they make identical decisions.

DEMONSTRATION OF ONE-SHOT MODEM PROCESSING
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Now to generate the received signal:

The Received Signal

     For convenience in generation and detection, pack the signals together as columns of a matrix:

S 0〈 〉 s0:= S 1〈 〉 s1:= S 2〈 〉 s2:= S is KxM

and generate the signal index m (the information) bydata3 x( ) floor rnd 3( )( ):= (x is a dummy 
argument)

Define the Channel

     We'll work with the AWGN channel.  Selecting the SNR defines the noise variance: 

γs 5:= No
Es

γs
:=

This generates a Gaussian noise sample of the right variance

noise x( )
No

2
2− ln rnd 1( )( )⋅⋅ cos rnd 2 π⋅( )( )⋅:= (x is a dummy argument)

and this generates the vector of noise samples:

noisevec x( )

ni noise x( )←
i 0 K 1−..∈for

n

:=
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To see other possible 
received waveforms, 
park the cursor on one of 
the highlighted regions 
and press F9.

Receiver Processing

     We'll do two forms of receiver processing.  However, they both need a "select largest" or argmax 
function.  Define it here:

argmax x( ) M length x( )←

indexm m←
m 0 M 1−..∈for

x' augment x index,( )←
x' csort x' 0,( )←
x'M 1− 1,

:=

csort rearranges the rows of a matrix 
into ascending order on the values of 
the identified column

Correlate Against Signals

     In this form of the receiver, we calculate the inner products of the received waveform against the 
possible signals, subtract a bias and select the largest.  The bias is zero, since we have equiprobable, 
equal-energy signals.

     Form a matrix with columns equal to our signal waveforms.  Column indexj 0 M 1−..:=

S j〈〉 S0 j, ψ 0⋅ S1 j, ψ 1⋅+:= This KxM matrix contains our reference waveforms. 
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Rxsigs Nsim( )
m data3 i( )←

r S m〈 〉 noisevec i( )+←

r Ψ T
r⋅←

R i〈〉 r←

i 0 Nsim 1−..∈for

R

:=

It is interesting to visualize the variability of the received signal over many, many trials.  Set up a 
simulation and plot the results. 

What the Receiver Sees

Not surprisingly, the results are the same.

mhat2 0=mhat2 argmax c( ):=c

0.983

0.284−
0.699−









=c ST r⋅:=

then do the inner products with the signal vectors expressed in the same basis to get the metrics:

r
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     In the second form of receiver, we vectorize the received signal to get its components in the ψ
basis

Correlate Against Basis Waveforms

mhat1 0=m 0=But is it right?mhat1 argmax c( ):=and the decision is

c
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=c ST r⋅:=

Now get the inner products as a length-M vector of metrics c:
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Nsim 1000:= R Rxsigs Nsim( ):= i 0 Nsim 1−..:=
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To see others, park the cursor 
on the highlighted equation and 
press F9.

To see the effect of other SNR 
values, go back and change γs.
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