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Concatenated Decoding with a
Reduced-Search BCJR Algorithm

Volker Franz and John B. Anderson,Fellow, IEEE

Abstract—We apply two reduced-computation variants of the
BCJR algorithm to the decoding of serial and parallel concate-
nated convolutional codes. One computes its recursions at only
M states per trellis stage; one computes only at states with values
above a threshold. The threshold scheme is much more efficient,
and it greatly reduces the computation of the BCJR algorithm.
By computing only when the channel demands it, the threshold
scheme reduces the turbo decoder computation to one–four nodes
per trellis stage after the second iteration.

Index Terms—Complexity reduction, concatenated coding, de-
coders, error correction.

I. INTRODUCTION

T HERE has been great interest in recent years in coding
systems that employ various kinds of code concatenation.

These can be conveniently divided into serial and parallel
systems, as shown in Fig. 1. In serial concatenated coding, an
outer encoder feeds its output to a second, inner encoder, and
the decoding is performed by corresponding inner and outer
decoders. One recent paper on this subject is [7]. In parallel
concatenated coding, the same data are encoded twice sepa-
rately, and the encodings are sent and decoded in parallel. An
important parallel method called turbo decoding was devised
by Berrouet al. in 1993 [1]; we will describe it in detail in
Section IV. In both serial and parallel coding, an important
element of the decoder is the MAP (maximuma posteriori
probability) decoder, a device that puts out the probability of
individual trellis states or data symbols, rather than simply
the most likely state or symbol, or information about an
entire state sequence. Probabilities are needed because the
two subdecoders in a serial or parallel decoder system need
to exchange soft information in order to achieve good error
performance. These flows are shown in Fig. 1 by dashed lines.
For trellis encoding with Markov data, the implementation
of the MAP decoder becomes a special scheme, the BCJR
algorithm, named after the authors of [2].

Unfortunately, the BCJR is computationally intensive, and
the purpose of this paper is to present a strong simplification
of it that does not sacrifice the decoder error performance. The
main simplification of BCJR heretofore has been the SOVA
(soft-output Viterbi algorithm) of Hoeher and Hagenauer [3].
The SOVA associates a simplified estimate of the data symbol
probability with each trellis state, and revises the estimate at
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Fig. 1. (a) Serial and (b) parallel concatenation.

each trellis stage. Later modifications of SOVA by Robertson
and coworkers, such as [5] and [6], have attempted to simplify
the scheme still further. While the basic SOVA does run signif-
icantly faster than the BCJR, it also fails to perform as well.
The schemes that we present will exploit the fact that most
probabilities in the working of the BCJR algorithm are very
small. We look at ways to ignore these small probabilities and
their related computation, without losing error performance.
We find that the most successful strategy is simply to truncate
small probabilities to zero, thus killing the computation that
stems from them. The modified BCJR keeps track of and works
with what information remains alive. When the channel noise
is low, most probabilities are small, and little computation is
performed; when the channel is poor, many trellis paths are
probable, and the BCJR expands to its full computation.

The BCJR algorithm works with vectors whose components
are values at the trellis states and which evolve stage by stage.
Section II will review the basic BCJR recursions that produce
these vectors, and explain several strategies for truncation of
vector components. One strategy keeps a fixed small number

of the vector components alive; the other keeps all those
alive that lie above a certain threshold. Section III applies these
two strategies to a rate-1/3 serial convolutional coding system.
Section IV applies them to a rate-1/3 parallel “turbo” coding
system. In both kinds of concatenation, the threshold method
works best.

II. THE BASIC ALGORITHMS

Before presenting test results, we review the algorithms that
will be used to produce them.
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The BCJR algorithm performs two basic recursions on
the stream of received channel outputs . From the
results of these recursions, it computes the probabilities of
the encoded data and of the various transitions in the code
trellis. It is useful in what follows to keep in mind the code
trellis and to associate the computed values with nodes, stages,
and transitions in the trellis. It is also convenient if we adopt
matrix terminology.

The BCJR algorithm seeks the probabilities

(1)

the probability that the encoder was in stateat time , given
the frame of observed channel outputs. (Note that in this paper,
the code will be a rate-1/2 convolutional one, and eachis
a pair of AWGN channel outputs.) Actually, the algorithm
finds, instead, the probabilities

(2)

which are those in (1) scaled by a constant, .
Next, define the matrix by

(3)

There is one for each trellis stage. In our case, it amounts
to the probability that the transitionto and the output
occurs, given that the state at stage was ; any a priori
probabilities on the data (and hence on the encoder transitions)
enter the algorithm here. Finally, define the row vector

(4)

and the column vector

(5)

The steps of the BCJR algorithm are then as follows.

1) Form the set of row vectors , one for
each trellis stage, by theforward recursion

(6)

2) Form the set of column vectors ,
one for each stage, by thebackward recursion

(7)

3) Form the set of row vectors in (2) by

all (8)

If the encoder starts in state 0, the forward recursion is
initialized by the vector . If the encoder
terminates in a known state, the backward recursion begins
from , where the 1 is in the th
position.

By summing the components of any can
be obtained; normalizing (2) by this factor gives ,
the probability that the encoder entered stateat time . More
generally, it can be shown that any complete or can
be scaled by any factor, and in (8) still yields the same

when is normalized to unit sum. An important
point in what follows is that we normalize eachand to

(a)

(b)

Fig. 2. Computation patterns in a reduced BCJR algorithm working in an
eight-state trellis. A line connecting two nodes indicates that the left node
value was used to compute the right node value, and that the right value
survived the reduction process. (a) “M ” computation pattern, keeping best
two nodes at each stage. (b) “T ” pattern, keeping nodes with values above
a threshold.

unit sum as they are found. This is the key to the second
of the reduced algorithms, and it is a practical requirement
in any case because successive outcomes of the forward and
backward recursions will otherwise diminish to insignificance.

The probability that a trellis transition occurred from
to can be computed from

(9)

A similar comment about normalization applies to (9). The
probability , the probability that data symbolwas
0, can be obtained by summing all of the that correspond
to data 0 (feedforward codes) or all of the in (9) that
correspond to data 0 (for recursive codes). With binary data,

.
The SOVA replaces all of this calculation by a series of

upgraded estimates of the probability . The scheme
runs the Viterbi algorithm, except that at each stage, the spread
of metrics entering a given node is noted. From this and from
the estimate at stage , an estimate of is
formed.

We will explore two reduced-computation versions of the
BCJR algorithm. One is based on the algorithm, a reduced
trellis decoder that searches breadth-first through a trellis,
retaining the best -state paths at each level. In an-BCJR
algorithm, the forward recursion on that produces
is performed using only the largest components of ;
the rest are declared dead and set to 0. The same scheme
can be applied with the backward recursion, but because (8)
and (9) are products of and components, it is simpler
just to execute the backward recursion on the region of the
trellis where the forward elements are alive. Fig. 2 shows an
idealized -BCJR computation pattern with .

In the second reduced scheme, components are set to zero
whenever they fall below a threshold. At each stage, the
found is normalized to unit length. In finding by (4), only
the components of are used that exceed the threshold;
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Fig. 3. BER performance againstEb=N0 with serial concatenated rate-1/3 coding. BCJR inner decode is compared toM -BCJR withM = 4, 8, 12.
16-state encoders. VA outer decoder.Eb is energy per data bit.

the rest are set to zero. This is the-BCJR scheme. As with
-BCJR, the backward recursion need only trace through

regions where the trellis is alive after the forward recursion.
Fig. 2 shows a sample computation pattern; unlike the-
BCJR pattern, the computation can vary widely. This can
present difficulty in a hardware implementation with a maxi-
mum cycle rate, but is less of a problem in a software version,
where it implies only that a certain size data buffer is available.

In both schemes, some method is needed to keep track of
which computation nodes remain alive. If the set of whole
and vectors are kept intact, then the 0 entries mark the killed
nodes. Otherwise, a system of pointers to live nodes can be
kept; this will save storage. In any case, almost all of the effort
in the BCJR is expended in the real-number updating of the

and set, and this effort is saved at the killed nodes.

III. REDUCED COMPUTATION WITH SERIAL CONCATENATION

We report first on the testing of a rate-1/3 serial con-
catenated convolutional coding system that employs reduced
computation. The outer encoder is a rate-2/3 encoder, obtained
by puncturing various feedforward rate-1/2 encoders. Every
second bit produced by the second set of taps is punctured,
which results in three codeword bits for every two data bits.
The inner encoder is a feedforward rate-1/2 encoder. The
transmission frame is 212 data bits. Between the two encoders
comes a random interleaver; its random pattern is changed
at each frame, so as to provide a measure of the average
performance of random interleaving. The outer encoder in
every test is a Viterbi decoder. The best error performance

in this system with code memories in the middle range (4–6)
occurs when the inner decoder is the BCJR algorithm and the
outer VA makes use of its soft output. When the inner decoder
is a SOVA, performance is about 0.2 dB worse, and when it
is just a hard-output VA, performance is perhaps 1 dB worse.
However, our interest now is in a reduced BCJR.

Fig. 3 shows the bit-error rate (BER) performance against
for several , with an -BCJR as the inner (first)

decoder, a VA outer decoder, and memory-4 codes. The
-BCJR performs steadily better as the number of retained

state paths grows, and apparently performs at the full BCJR
level only when reaches 16, the number of states in the
full trellis. At least for small trellises, it seems that the
approach is not fruitful for the serial coding system. We will
comment further on this later.

Here and throughout the paper, sufficiently many frames are
transmitted during tests so that at least ten erroneous frames
are received. This leads to an uncertainty that can be judged
from the figures. This many frames are needed even for the
BER measurements since the mechanism of decoder error is
frame failure, not individual symbol failure.

A reduced-computation BCJR based on deletion of paths
below a threshold seems to be much more successful. Fig. 4
shows the BER for the same system as Fig. 3, but with a

-BCJR having the thresholds shown (i.e., inner-BCJR,
outer VA, memory-4 codes). With threshold 0.001, the BER
performance virtually equals the full BCJR. The average
number of states that fall above the threshold is shown
in Fig. 5, plotted against , for several thresholds. At
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Fig. 4. BER againstEb=N0, serial concatenation. BCJR inner decoder is compared toT -BCJR with threshold kappa= 0.0001–0.05.

Fig. 5. Serial concatenation and theT -BCJR. Average number of live states per trellis stage againstEb=N0 for several thresholds.
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(a)

Fig. 6. (a) (Above) “Turbo” rate-1/3 parallel concatenated encoder. (Below) Rate-1/2 recursive systematic encoder with memory 4.

threshold 0.001, the -BCJR reduces the live states in the
recursions from 16 to the range 6–9, depending on the value
of .

IV. REDUCED COMPUTATION

WITH PARALLEL CONCATENATION

We next report on tests of a rate-1/3 parallel concatenated
system, specifically, a “turbo” convolutional decoder. Since
there are many variations on the turbo theme, we begin with
a description of the particular one used here. As shown in
Fig. 6(a), the frame of data at the encoder feeds a
first rate-1/2 recursive systematic coder (RSC), and after an
interleaving, the same data feed an identical second encoder;

the parity bit output of both encoders is transmitted, while
the data bit output of Encoder 2 is ignored. A sample RSC is
shown in the figure. It is defined by its taps taken as octals,
with a leading tap always present and the feedback set written
first; the RSC in the figure is a (46, 72) RSC. Fig. 6(b) shows
the iterative decoder that we use. The first iteration works as
follows. Decoder 1 uses the received channel sequences
and , and , the log-likelihood ratio derived from
any a priori probabilities about those data that are known (if
nothing is known, the ratio is 0). The outputs of Decoder
1 are thea posteriori log-likelihood ratios of , denoted

. What is passed to Decoder 2 is not this ratio, but
is rather the so-calledextrinsic information, expressed by the
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(b)

Fig. 6. (Continued.) (b) Turbo decoder structure.

Fig. 7. Turbo decoding BER againstEb=N0 for the basic BCJR decoder; frame size 256 and 1024, five iterations, andm = 4 encoders. Comparison is
made to SOVA turbo decoder and tom = 8 encoder with ordinary VA decoding.Eb is total energy per data bit.

log-likelihood ratio

(10)

Decoder 2 accepts as itsa priori information about
, denoted in the figure as , and from this together with

the streams and , it calculates a newa posteriori
ratio for , denoted . Technically, is the
a priori ratio at the input to Decoder 2, but investigations
by us and others have shown that this input gives too much
emphasis to the originala priori ratio , and so
is used instead.

The calculation of by MAP Decoder 2 completes one
iteration of the turbo decoder, and the output data symbols
are available as the sign of the ratio. If further iterations are
desired, ana priori input for Decoder 1 is formed from

(11)

and fed to Decoder 1. Various interleavers and deinterleavers
are needed as shown in the figure.

As a performance benchmark for this decoder, we give
Fig. 7, which plots the decoder BER against for frame
lengths 256 and 1024 data bits. The encoders are the
one in Fig. 6(a). Each frame transmission is terminated by
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Fig. 8. Turbo decoding and theM -BCJR. BER againstEb=N0 for the BCJR and theM -BCJR withM = 8, 12. Frame size 256 andm = 4 encoders.

bits, and the decoders pass through five iterations. The figure
also shows some BER’s observed for a SOVA implementation
of the decoder, with frame size 256. SOVA is about 1 dB worse
that the full BCJR implementation. For comparison to these,
we have plotted the BER observed with simple VA decoding
of the -state rate-1/3 code with best free distance. It
performs 2 dB worse at low BER, compared to the 1024-frame
turbo system. Further details are available in [4].

Fig. 8 shows the BER against when the BCJR in
Decoders 1 and 2 is replaced by an-BCJR. The frame size
is 256, and the decoder works through five iterations. As in
the serial decoder, the performance improves when more state
paths are kept, but seems to reach the full BCJR performance
only when the full trellis of paths is computed.

Fig. 9(a) (BER) and (b) (frame-error rate) shows the per-
formance when the threshold BCJR is used instead. There
are again five iterations, and as always, the decoder ran
until at least ten frame errors occurred. The encoders in this
test series were a (75, 62) RSC, with free distance 6. It
appears that threshold 0.0001 gives near-optimal performance,
and that 0.0005 gives quite good performance. But the real
story is told by Fig. 10, which plots the average number of
live states per iteration for several thresholds as a function
of , and by Fig. 11, which shows how this average
declines with the iteration number at threshold 0.0005. At any
reasonable , the -BCJR yields a major reduction in
the recursion calculation already on the first decoder iteration.
After the initial one or two iterations, the -BCJR reduces
the computation to the extension of virtually a single path,

when the channel exceeds 1.5 dB. This means that
later decoder iterations contribute little cost compared to the
initial iteration.

V. CONCLUSIONS

We have developed several ways to reduce the trellis
calculation of the BCJR algorithm, and have tested them
with serial and parallel concatenated coding schemes at rate
1/3. By far, the most successful strategy of reduction is to
suppress calculation after trellis nodes whose values fall below
a threshold. There is apparently a huge variation in the values
of normalized and during the BCJR recursions, and the
dropping of values that fall below a certain reasonable limit
seems to have virtually no effect on the utility of succeeding
values. We suspect that there is wide scope for further and
more subtle extensions of the threshold idea.

The reduction of the recursions to a constantcomputation
paths through the trellis was not successful. An explanation of
this is possible. We have observed that erroneous decoding
is caused by disturbances that cause many values ofor

at a few levels to have roughly similar values, instead of
the usual wide spread of values. To deal with this situation
requires all of the resources of the BCJR procedure, and
when this is restricteda priori in the manner of the -
BCJR, certain noise bursts cannot be cleaned up. The-BCJR,
on the other hand, is guided by the size of theand
values, and when there are many values of significant size, the

-BCJR expands the computation to include all of them.
During the decoder iterations, the two parts of the turbo
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(a)

(b)

Fig. 9. (a) Turbo decoding and theT -BCJR. Bit-error rate againstEb=N0 for several thresholds. Five iterations. (b) Frame-error rate for the case
of (a). Five iterations.

decoder trade information, and it may happen that one part
finds that some state transition in the other has very low
probability. The consequence is that someand values
in the other forthwith fall below threshold, and no further
computation occurs out of this transition. This kind of behavior

probably causes the reduction in-BCJR computation to a
single path that occurs in later iterations.

This paper and most previous work with turbo codes have
been restricted to codes with small state space, generally 16
or less. The reduced algorithms here make practical for the
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Fig. 10. Turbo decoding and theT -BCJR. Average number of live states per iteration againstEb=N0 for several thresholds. System of Fig. 9. Eight iterations.

Fig. 11. Turbo decoding and theT -BCJR. Average number of live states observed during each iteration, with threshold 0.0005 andEb=N0 = 0–2.5
dB. System of Fig. 9. Eight iterations.

first time the use of codes with many states. We have, in fact,
tested encoders with as many as 64 states, and their overall
computation average was not very different from the 16 state
results here. This is because the-BCJR remains always,
and the -BCJR only expands toward 64 states during very
unlikely noise bursts.

It may be that the -BCJR is relatively more attractive
with large codes than it is with small ones; historically, this
was the case with the algorithm and ordinary convolutional
decoding. However, we suspect and conjecture that large codes
are useful only at higher ; small component codes are
big enough at rate 1/3 in the range 0–2 dB. Above this range,
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the -BCJR is unbeatable because the average computation
drops to a single path after the first iteration. Thus, we suspect
that the -BCJR is generally better than the -BCJR.
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