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Accurate Error-Rate Calculations Through the
Inversion of Mixed Characteristic Functions
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Abstract—This letter presents a new computational tool for use
in general fading channel analyses when the detection scheme can
be expressed as a quadratic form in zero-mean complex Gaussian
random variables. We develop a simple numerical algorithm which
is capable of inverting a characteristic function consisting of both
simple and multiple poles. The approach benefits from the inherent
symmetry in the residue calculations and uses the well-known Van-
dermonde matrix in order to take advantage of this symmetry. It
is numerically stable, eliminates singularities, and circumvents the
need for differentiation.

Index Terms—Cauchy’s residue theorem, inverse Laplace trans-
form (ILT), Vandermonde matrix.

I. INTRODUCTION

WHEN CALCULATING an error rate or the probability
of flagging an erasure in fading channels [1], most

thresholding schemes can be reduced to the evaluation of a
quadratic form in Gaussian variates. For the special case of
Rayleigh fading, the complex Gaussian variates are zero mean,
and the characteristic function of the thresholded variableis
given by [2]

(1)

where are the left-plane
(LP) poles, are the right-plane (RP) poles, and the poles
are not necessarily distinct.

In order to calculate the probability of error or of flagging an
erasure, we can take the two-sided inverse Laplace transform
(ILT) of to obtain the cumulative distribution function
(CDF) of the random variable,. Through the use of Cauchy’s
residue theorem [5], the ILT can be determined by calculating
the residues at the RP or LP poles as shown in [3].

Inversion of by residues is straightforward if
contains simple poles only. However, if it contains multiple
poles, as is common in diversity problems, residue calculation
requires tedious differentiations. The varying signs of the
residues and their small sum also produce numerical instability.

In [4], the generalized inverse Vandermonde matrix is used to
invert the Laplace transfer function of a time-invariant system
with both multiple and simple poles. Our situation is different
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from that in [4] in two ways. First, we are dealing with the two-
sided Laplace transform as opposed to the one-sided Laplace
transform, and second, the poles of our transfer function change
with the fading channel statistics. Since differences in the fading
channel statistics change the pole locations, we need a simple
method for handling the situation where the pole multiplicity
can change with the operating conditions.

This letter presents a simple new method for using residues
to invert a characteristic function with both simple and mul-
tiple poles. It exploits symmetry in the residues, in order to
use the properties of the Vandermonde matrix [5] to provide
explicit cancellation of factors in the numerator and denomi-
nator, thereby avoiding the singularities and numerical instabil-
ities that plague conventional inversion.

II. RESIDUE CALCULATION METHOD

The CDF of , , is determined by calculating the
two-sided ILT of . Rather than keeping the additional
pole at zero separate, is modified so that this additional
pole is included into the LP poles such that . In
order to describe the residue calculation method, it is assumed
that , and the residues will be taken over the RP poles.
The modification for is straightforward.

Since it is assumed that , the RP poles, which are
all real, are increasingly ordered and are represented as

and . The residues at the
RP poles are given by

(2)

If the RP poles are distinct, then (2) presents no problems. How-
ever, if the RP poles come closer together to become multiple
poles, in (2) approaches zero, and some residues
will contain singularities. However, we are interested only in
the sum of the residues, which as shown below, leads to cancel-
lation of all factors of the form , thus eliminating the
singularities.

In order to eliminate the terms in the denominator, each
residue is multiplied by a common factor, ,where

(3)

(4)

The modified residues, denoted , are given by

(5)
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where

(6)

is positive, and

(7)

is merely nonnegative. The CDF ofis given by

(8)

It can be shown that and are both determinants of Van-
dermonde matrices [5], where represents , but with the

th column and the last row removed. Therefore, from (8), it
can be observed that the formulation of is equivalent
to evaluating the determinant of a matrix through the expansion
of minors. In (8), is the minor associated with , and the
CDF of is

(9)

where

...
...

.. .
... (10)

The divisor of (9) is . Because can be very small
or zero when , the division can cause numerical
problems. We, therefore, factorout of the determinant, giving

, and cancel to obtain the numerically
stable

(11)

The matrix, , can be calculated in an iterative fashion by ex-
ploiting the following properties of determinants.

Property #1:To any column of the matrix we can add any
multiple of any other column without changing the determinant.

Property #2:A common factor of all the elements in a row or
a column can be taken outside the determinant.

Fig. 1 provides an example to show the iterative procedure
for , and the formal derivation can be found in [6, App. A].
As can be seen in Fig. 1, becomes a lower triangular matrix.
Therefore, will simply be the product of the diagonal
elements, a simple calculation since the only diagonal element
not equal to one is . Proof of divisibility is given in [6,
App. A].

III. I MPLEMENTATION

We now present an iterative procedure for calculating
by factoring from . It is numerically stable, requires no di-

Fig. 1. Iterated matrix,H , for three RP poles.

visions or symbolic processing, and completes in iter-
ations. We first define

(12)

(13)

where is expanded using the Maclaurin series, and it is trun-
cated at terms. The arbitrary parameter can be selected
to minimize the length of the Maclaurin series. The number of
terms depends on the accuracy desired, the threshold, and the
pole spread. For example, with a threshold of and
a pole spread that corresponds to a 40-dB difference in signal
strength, a relative error of can be achieved with six terms,
and can be achieved with nine terms. Fewer terms are re-
quired for smaller thresholds and pole spreads.

The following recursion generates for ,
and is the desired . Start it by defining the
vectors

(14)

(15)
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Fig. 2. Algorithm implementation for three pole pairs.

(16)

(17)

where is the length of or , whichever is
larger. The range of is , and the subscripts,
and denote lower and upper, respectively. The coefficients of
the next polynomial are calculated as

(18)

The summation in (18) denotes a summation over all of the el-
ements in the resulting matrix. An example of the implementa-
tion for three pole pairs is given in Fig. 2. For simplicity, the
parameter is set to zero. As can be seen from the figure,
the coefficients of are easily calculated from
and , and the coefficients of are calculated
from and . In the algorithm’s final iteration,

, and are the coefficients of . The
CDF of the random variable,, is then given by

, and numerical values are used for
. The entire procedure requires iterations to invert

a characteristic function with RP poles.
For clarity, (11) shows multiplied by

once the iterations are complete. However, (3) shows that di-
vision by can be performed one stage with each iteration, a
stabilizing feature when pole multiplicities are very high.

IV. CONCLUSION

To conclude, (18) provides an efficient and numerically stable
way of calculating error and erasure rates when the detection
scheme can be expressed as a quadratic form in zero-mean com-
plex Gaussian random variables. The method is very general,
since it can invert a characteristic function with simple, multiple,
and nearly equal poles. The characteristic function is inverted
without resorting to numerical integration or tedious differenti-
ation by hand.
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