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OUTLINE: 

 

• Space-time MUD and the value of ML 

 

• The Viterbi algorithm reinterpreted 

 

• MUD in space – the new CMM algorithm 

 

• MUD in space-time 
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1.  ML-MUD in Space 

 

 

 

 

 

 

 

 

 

 

• This picture is ingrained… mobiles “belong” to a cell, that 

is, a base station. 

 

• But some mobiles can be received by more than one base.  

Normally, we deal with it by: 

⇒  ignoring it; 

⇒  or soft handoff; 

⇒  or some ad hoc form of macrodiversity. 
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• What if there were no cells, or irregular, overlapping cells?  

Examples: indoor systems, campus networks.  The picture: 

 

 

• View antennas as sensors in a common field.  Each antenna 

picks up a subset of the users, and the subsets overlap. 

 

• Interference mitigation is a central issue.  It is most 

effective if bases pool information over a backbone 

wireline network and perform multiuser detection. 
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• Linear or nonlinear MUD? 

 

• Contrast a single base station’s use of MMSE estimation 

and ML estimation of transmitted data from mobiles:  

 

⇒  With MMSE estimation, error rate degrades 

rapidly with increasing user numbers. 

 

⇒  ML detection retains diversity order and good error 

rate, almost irrespective of number of users – but its 

computational load is very large. 
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• There is strong motivation find methods that 

⇒  offer near-ML performance with greatly reduced 

computational load, or 

⇒  do ML in some way that keeps the exponent of 

growth to a minimum. 

 

 

 

 

 

• The spatial dimension – overlapping subsets of received 

users – is critical.  Our solution: 

⇒  a new algorithm, based on dynamic programming, 

that keeps the exponent of growth to a minimum in 

various time-space configurations; 

 
⇒“conditional metric merge” (CMM); 
 
⇒  the algorithm serves as a computational model on 

which suboptimal, lower computation, algorithms 

can be based. 

 

 

 

We explore the second tack today.  Our goal: 

  joint ML detection of every bit sent by every user. 
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2.  Signals and Interference 

• Many mobiles, many antennas…  

 

• Mobiles send sequence of pulses weighted by discrete data 

values, like ( ) 1kb n = ±   for mobile 1k K= … , time 

1n N= … .  Aggregate symbols to ( )nb . 

 

• Measurement at antennas at each symbol time: ( )my n  for 

antenna 1m M= … .  Aggregate to ( )ny . 

 

• Stack all measurements and data for 1n N= … , to get  

  

 = +y Cb n 

 
Discrete b affects noisy measurements linearly.   
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• Details: gain matrix C is composed of MxK blocks; system 

structure determines block structure. 

  
 

⇒  If echoes are limited, then y(n) depends on mobile 

bits b(n) at a few consecutive times; e.g., n, n-1 if a 

short impulse response, giving C a block diagonal 

and block subdiagonal only.  Viterbi algorithm. 

 

⇒  Not all mobiles appear significantly at all antennas.  

The blocks will contain zeros, and rows will contain 

different user subsets.  Spatial CMM algorithm. 
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• ML detection: 

⇒  With uncorrelated noise components, the log-

likelihood of some candidate data vector b (all bits 

from all users) is proportional to 

  

 2−y Cb  

   
⇒  Just run through all 2NK  candidate b values, and 

choose the one with the smallest metric (!) 

 

• But all is not lost – the metric is a sum of contributions 

from each measurement (in time and space) 
2

2
,( ) ( )m nM m nK k k

n m k

y n C b n+ +− = −∑∑ ∑y Cb  

The gain matrix C has a sparse structure, so each 

measurement depends on a relatively small number of 

bits. 
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• Dynamic programming can be applied usefully to a 

problem if: 

 

1.  The optimal solution consists of optimal solutions to a 

set of subproblems, each of which consists of optimal 

solutions to a set of subsubproblems… i.e., the optimal 

solution has a recursive structure. 

In our case, the lowest level subproblem is optimisation 

at each measurement ( )my n , although recursion is based 

on larger aggregates of measurements. 

and 

2.  The subproblems overlap, so that subproblems share 

subsubproblems.   

In our case, the metrics associated with the 

measurements include different, but possibly 

overlapping, sets of users. 

 

• Unlike pure recursion, which may solve shared 

subsubproblems repeatedly, DP solves them once and 

saves the result for combinations at the next higher level. 
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3.  Viterbi Reinterpreted 

 

• The most famous application of dynamic programming is 

the Viterbi Algorithm, a ubiquitous component of 

communication systems. 

 

• We’ll review what is now the conventional description, 

then reinterpret it as a stepping stone to the new spatial 

extension. 
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• Consider a single source and a single receiver, binary 

(±1) transmission, some echoes, so that the measurement 

at any symbol time is affected by (say) 3 successive bits. 

 

 

 

 

 

• The contribution to the metric from measurement n is  
2

0 1 2( ) ( ) ( 1) ( 2)y n c b n c b n c b n= − − − − −µ  

 

and the gains matrix looks like 
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• Signals are usually represented by a trellis of data 

possibilities, where a state is 2 successive bits, so that a 

trellis transition (a branch) specifies the required 3 

successive bits. 

 

 

 

 

 

 

 

⇒  Problem: Many paths through the trellis terminate at 

a particular state at the final time N.  Find the one with 

minimum sum of branch metrics.  Then select the state 

with the correspondingly minimised metric and release 

its minising path. 

+ +

+ -

- +

- -

n-1 nn-2n-3
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• The Viterbi recursion: 

 

⇒  Assume that the problem has been solved up to time 

n-1; that is, for each state at n-1 (say, +-), we have  

- the accumulated metric ( 1)M n+− −  

- the “survivor path” ( 1)n+− −P  of bits prior to those 

in the state  

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

+ +

+ -

- +

- -

n-1 nn-2n-3
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⇒  The update: the best path terminating in state (say) 

++ at time n must go through one of ++ or -+ at time 

n-1.   

 

 

 

 

 

 

- Add the metrics: 

 
( 1) ( ( ), )

( ) or
( 1) ( ( ), )

M n y n
M n

M n y n

µ

µ

++

++

−+

− + ++ → ++
= 
 − + −+ → ++

 

 
  Select the smaller.  Suppose it is -+… 

 

- … the me tric is then 

( ) ( 1) ( ( ), )M n M n y nµ++ −+= − + −+→++  

  and the survivor path is  

  ( )( ) ( 1),n n++ −+= − −P P  

+ +

+ -

- +

- -

n-1 nn-2n-3

M++(n-1)

M-+(n-1)

( )µ ++→++

( )µ −+→++
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⇒  Repeat for remaining states at time n : 

 

 

 

 

 

 

 

 

 then move on to n+1,…,N and it’s done. 

 

• The VA exploits the sparsity and locality of C entries to 

keep the computation proportional to the number of 

branches.  So it’s 32 N  – linear in N, exponential only in 

the number of bits that affect any measurement. 

+ +

+ -

- +

- -

n-1 nn-2n-3
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• Now to go over the problem again with the tabular 

orientation typical of much dynamic programming. 

 

• Two subproblems at time n: 

⇒  best path b[1:n-1] and metric M(n-1) based on 

y[1:n-1]; 

⇒  best selection of bits b[n-2:n] based on y[n]. 

⇒  They overlap. 

 

• Distinguish between “live bits” – ones that can affect 

future measurements – and “dead bits” – ones that form 

the survivor path in the trellis description. 

 

• We index the solutions to the first subproblem by its live 

bits: 

b(n-2) b(n-1) P(n-1) M(n-1) 

+1 +1 ( 1)n++ −P  ( 1)M n++ −  

+1 -1 ( 1)n+− −P  ( 1)M n+− −  

-1 +1 ( 1)n−+ −P  ( 1)M n−+ −  

-1 -1 ( 1)n−− −P  ( 1)M n−− −  
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• Index solutions to the second subproblem by the bits that 

affect it 

 

b(n-2) b(n-1) b(n) µ 

+1 +1 +1 µ(+++) 

+1 +1 -1 µ(++-) 

+1 -1 +1 µ(+-+) 

+1 -1 -1 µ(+--) 

-1 +1 +1 µ(-++) 

-1 +1 -1 µ(-+-) 

-1 -1 +1 µ(--+) 

-1 -1 -1 µ(---) 

 

 

• We can add metrics of the two subproblems directly only 

if they have the same live bits.   

 

• Unfortunately, the first subproblem has only b(n-2), b(n-

1) – a table of four rows.   
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• Bookkeeping solution: replicate those table entries for 

alternative values of b(n), since they don’t depend on that 

bit.  The result: 

 

b(n-2) b(n-1) b(n) M(n-1)  µ  M(n) 

+1 +1 +1 M++(n-1) + µ(+++) = M+++ 

+1 +1 -1 M++(n-1) + µ(++-) = M++- 

+1 -1 +1 M+-(n-1) + µ(+-+) = M+-+ 

+1 -1 -1 M+-(n-1) + µ(+--) = M+-- 

-1 +1 +1 M-+(n-1) + µ(-++) = M-++ 

-1 +1 -1 M-+(n-1) + µ(-+-) = M-+- 

-1 -1 +1 M--(n-1) + µ(--+) = M--+ 

-1 -1 -1 M--(n-1) + µ(---) = M--- 

 

That was the merge step – combining the subproblems.   

 

• Table size – a measure of complexity – is exponential in 

the number of bits that affect the measurement. 



 20 

• Not all bits remain live after processing the 

measurement.  Bit b(n-2) has no effect on future 

measurements, so we can select the better of those 

metrics which differ only in that bit; e.g., M+++ and M-++ .  

This gives a tentative decision; add it to the survivor path 

of the live bits. 

 

This reduces it to a subproblem-1 type of table 

b(n-1) b(n) P(n) M(n-) 

+1 +1 ( )n++P  ( )M n++  

+1 -1 ( )n+−P  ( )M n+−  

-1 +1 ( )n−+P  ( )M n−+  

-1 -1 ( )n−−P  ( )M n−−  

 

and the recursion step is complete. 

 

• We have now looked at the temporal Viterbi Algorithm 

in two closely related ways, and we are ready for a step 

into space. 
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4.  MUD in Space – the CMM Algorithm 

 

• Our original target was ML detection of users scattered 

across many cells, like this simplified macrodiversity/ 

microdiversity example. 

a1, a2

b

c

1

2

3

4

5  
 

• For simplicity, assume synchronous transmissions, no 

echoes, so = +y Cb n is only M antennas x K users – a 

purely spatial problem.  We would still rather not solve 

for b by enumeration over its 2K possibilities. 
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a1, a2

b

c

1

2

3

4

5  

• Again, we can obtain the overall metric by processing 

measurements in sequence 
22

m m
m

y− = −∑y Cb cb  

but the gains matrix is not well structured for direct 

application of the Viterbi algorithm: 

  

• It’s time for the conditional metric merge (CMM) 

algorithm. 

 

 

C

X

X

0

X

X

X

X

0

X

X

0

0

0

0

X

0

0

0

0

X














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• Dynamic programming view: 

 

⇒  The problem of calculating the accumulated metrics 

M(m) up to antenna m is a combination of two 

subproblems: accumulated metrics M(m-1) up to 

antenna m-1 and the metrics µ(m) at antenna m. 

 

⇒  Continue to antenna M and it is done. 

 

• An example will show how it works. 
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a1, a2

b

c

1

2

3

4

5  

• Start with the measurement at antenna a1. 

b1 b2 b3 M(a1) 

+ + + M+++(a1) 

+ + - M++-(a1) 

+ - + M+-+(a1) 

+ - - M+--(a1) 

- + + M-++(a1) 

- + - M-+-(a1) 

- - + M--+(a1) 

- - - M---(a1) 

 

All bits remain live, since they all affect the measurement at 

antenna a2, at least. 
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• The measurement at antenna a2 involves exactly the same 

bits (microdiversity) 

b1 b2 b3 µ(a2) 

+ + + µ+++(a2) 

+ + - µ++-(a2) 

+ - + µ+-+(a2) 

+ - - µ+--(a2) 

- + + µ-++(a2) 

- + - µ-+-(a2) 

- - + µ--+(a2) 

- - - µ---(a2) 

so they can be added directly to accumulate: 

b1 b2 b3 M(a2) 

+ + + M+++(a2) 

+ + - M++-(a2) 

+ - + M+-+(a2) 

+ - - M+--(a2) 

- + + M-++(a2) 

- + - M-+-(a2) 

- - + M--+(a2) 

- - - M---(a2) 

 

Bit 3 is no longer live, so select better metric from pairs 

that differ in b3; selected b3 value is a survivor of that 

pair. 
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a1, a2

b

c

1

2

3

4

5  

• The legacy from antenna a2 is then 

b1 b2 M(a2) 

+ + M++(a2) 

+ - M+-(a2) 

- + M-+(a2) 

- - M--(a2) 

 

• But the antenna b measurement depends on a different 

set of bits, so it can’t be added directly. 

b2 b4 µ(b) 

+ + µ++(b) 

+ - µ+-(b) 

- + µ-+(b) 

- - µ--(b) 

 

• Replicate both tables: legacy metrics on b4, new metrics 

on b1, since they are each independent of these respective 

bits.
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a1, a2

b

c

1

2

3

4

5  

• The result of replication is 

 

b1 b2 b4 M(a2) µ(b) M(b) 

+ + + M++(a2) µ++(b) M+++(b) 

+ + - M++(a2) µ+-(b) M++-(b) 

+ - + M+-(a2) µ-+(b) M+-+(b) 

+ - - M+-(a2) µ--(b) M+--(b) 

- + + M-+(a2) µ++(b) M-++(b) 

- + - M-+(a2) µ+-(b) M-+-(b) 

- - + M--(a2) µ-+(b) M--+(b) 

- - - M--(a2) µ--(b) M---(b) 

 

Table size exponential in number of live bits. 

  

• Only b1 remains live.  For each value of b1, choose the 

best metric from the four b2, b3 combinations, and the 

corresponding b2, b3 become survivors of that b1. 
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a1, a2

b

c

1

2

3

4

5  
 

• The legacy from antenna b is just 

b1 M(b) 

+ M+(b) 

- M-(b) 

 

• Processing of the antenna c measurement is now clear: 

⇒  The metric ( )cµ  depends only on 1
b  and 5

b . 

⇒  To combine, replicate the legacy on b5, then add the 

legacy and new metric for each of the four 

combinations. 

⇒  No more measurements, so neither bit remains live.  

Select the b1, b5 combination with smallest metric and 

release those bits, along with the corresponding 

survivors from b2, b3, b4. 
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• What do we have, in this new Conditional Metric Merge 

(CMM) algorithm? 

⇒  Like the Viterbi algorithm, it exploits sparsity and 

locality in the gains matrix C. 

⇒  It handles problems with less regular structure than 

does the VA. 

⇒  Like the VA, it is subject to exponential growth in the 

number of interfering bits at any measurement, but it 

keeps the exponent of that growth to a minimum. 

⇒  The actual load depends on the spatial arrangement 

and overlap of cells –an area of continuing 

investigation. 
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5.  MUD in Space and Time 

 

• Most (but not all) systems feature echoes and lack of 

synchronism among users, as well as spatial interference. 

 

• However, each measurement ( )my n  is affected by a small 

number of bits in temporal and spatial proximity.  The 

CMM algorithm is a least-computation method of 

obtaining the optimum (ML) solution. 

 

• CMM reduces to Viterbi for purely temporal problems. 

 

• The nightmare: having to carry around many live bits 

from time n-1 as we traverse the cells at time n.   

Possible solution: process measurements in other than 

strict time:antenna ordering – i.e., reorder rows and 

columns of C to move live bits into survivors as quickly 

as possible.  A continuing investigation. 
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5.  Summary 

 

• The exceptional performance of ML motivated 

development of an algorithm to reduce the computational 

load while producing a true ML solution. 

 

• Conditional Metric Merge (CMM) uses dynamic 

programming principles to handle decision-making from 

loosely structured space-time measurements.   

 

• Further reduction in load by appropriate sequencing of 

measurements is an area of further investigation. 
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Evolution of computation: 

 

 

 

 

 

 

• Antenna a 

New metrics: 2exp ( )aN  

Live entries after selection: ( )2exp ab abc acN N N+ +  

 

• Antenna b 

New metrics: 2exp ( )bN  

Table entries after combine: ( )2exp b acN N+  

Live entries after selection: ( )2exp ac abc bcN N N+ +  

 

• Antenna c 

New metrics: 2exp ( )cN  

Table entries after combine: 2exp ( )cN  

Live entries after selection: 0 

Naa Nbb

Ncc

Nac

Nabc

Nab

Nbc

Na: # units
connected to a

Nb: # units
connected to b

Nc: # units
connected to c
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