Digital Multi Meter

DC \＆AC Voltage

Ohms（Resistance）

DC \＆AC Current $100 \mathrm{~mA} \& 10 \mathrm{~A}$ Range
（Move the red－terminal）

For measuring unknown current， always use 10A socket first

If the measured current is less than 100 mA then move the red terminal to the 100 mA range

100mA Fuse

All modern digital meters are basically

 a voltage measurement device
Accuracy of DMM

Voltage $\quad \pm(0.02 \%+2$ Digit $)$
Current $\pm(0.05 \%+3$ Digit $)$
Resistance $\pm(0.05 \%+2$ Digit $)$
When you make any measurement notice how many decimal places the display show

A measurement exercise

Verify Ohm's law experimentally

Show your measurement and calculation reconciles within the instrument accuracy

Picked a 470Ω resistor from the bin

Measured the value using DMM

Measured the voltage applied using DMM

Measured the current using DMM
$0.499 \mathrm{~V} \div 468 \Omega=1.066 \mathrm{~mA}$
Then why does the meter read 1.04 mA ?

2\% error!
Meter specification: 0.05\% + 2 Digit

During current measurement a resistor is introduced in series (Shunt Resistor or meter burden)
We have to include this in our calculation 100 mA range: $11.5 \Omega \quad 10 \mathrm{~A}$ range: 0.5Ω
Lets take into account the accuracy of our measurements
Resistance measurement:
Resistance measurement:
$0.468 \pm(0.05 \%+2$ Digit $) 0.468 \pm\left[0.468 \times\left(\frac{0.05}{100}\right)+(2 \times 0.001)\right]$$\underbrace{470.234 \Omega}_{465.766 \Omega}$
Voltage measurement:
$0.499 \pm(0.02 \%+2$ Digit $) 0.499 \pm\left[0.499 \times\left(\frac{0.02}{100}\right)+(2 \times 0.001)\right] \leadsto \sim_{0.4969 \mathrm{~V}}^{0.5011 \mathrm{~V}}$
Current measurement:
$1.04 \pm(0.05 \%+3$ Digit $)$

$$
1.04 \pm\left[1.04 \times\left(\frac{0.05}{100}\right)+(3 \times 0.001)\right]
$$

1.04352 mA
1.03648 mA

Re-Calculate the current including the shunt resistance
470.234Ω
465.766Ω
Max possible current
$\frac{0.5011}{465.766+11.5}=1.0499 \mathrm{~mA}$

Min possible current

1.0499 mA
1.04065 mA
0.06\%
1.0314 mA

Calculated

