Digital Multi Meter (DMM)

For measuring unknown current, always use 10A socket first

Ohms (Resistance)

DC & AC Voltage

100mA & 10A Range (Move the red-terminal)

If the measured current is less than 100mA then move the red terminal to the 100mA range

100mA Fuse

All modern digital meters are basically a voltage measurement device

Accuracy of DMM

Voltage $\pm (0.02\% + 2 \text{ Digit})$

Current $\pm (0.05\% + 3 \text{ Digit})$

Resistance $\pm (0.05\% + 2 \text{ Digit})$

When you make any measurement notice how many decimal places the display show

A measurement exercise

Verify Ohm's law experimentally

Show your measurement and calculation reconciles within the instrument accuracy

Picked a 470 Ω resistor from the bin Measured the value using DMM Measured the voltage applied using DMM Measured the current using DMM

 $0.499V \div 468\Omega = 1.066 \text{mA}$

Then why does the meter read 1.04mA?

2% error! Meter specification: 0.05% + 2 Digit

During current measurement a resistor is introduced in series (Shunt Resistor or meter burden) We have to include this in our calculation 100mA range: 11.5Ω 10A range: 0.5Ω Lets take into account the accuracy of our measurements **Resistance measurement:** 470.234Ω $0.468 \pm (0.05\% + 2 \text{ Digit}) = 0.468 \pm \left| 0.468 \times \left(\frac{0.05}{100} \right) + (2 \times 0.001) \right|$ 465.766Ω Voltage measurement: 0.5011V $0.499 \pm (0.02\% + 2 \text{ Digit}) 0.499 \pm \left[0.499 \times \left(\frac{0.02}{100} \right) + (2 \times 0.001) \right]$ 0.4969V Current measurement: 1.04352mA 1.04 \pm (0.05% + 3 Digit) 1.04 \pm $\left| 1.04 \times \left(\frac{0.05}{100} \right) + (3 \times 0.001) \right|$.03648mA

Re-Calculate the current including the shunt resistance

470.234Ω	Max possible current	
465.766Ω	$\frac{0.5011}{465.766 + 11.5} = 1.0499 mA$	
0.5011V	Min possible current	
0.4969V	$\frac{0.4969}{470.234 + 11.5} = 1.0314 mA$	
1.04352mA	1.0499mA	
1.040mA	1.04065mA	0.06%
1.03648mA	1.0314mA	
Measured	Calculated	