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ENSC 320 Electric Circuits II (Summer 2006) 

This is the second course in electric circuits. ENSC 220 Electric Circuits I is its prerequisite. See any 
accessible web pages for ENSC 220 (http://www.ensc.sfu.ca/~ljilja/ENSC220/). (Refresher: Notes, 
PDF: http://www.ensc.sfu.ca/people/faculty/ljilja/ENSC220/ensc220a.pdf.) 

The goal of the course is to introduce formal tools and methods necessary to analyze various physical 
systems (such as circuits). These tools are general and may be applied to other engineering systems: 
control systems, mechanical systems, MEMS. 

In this course we will apply these formal methods and tools to analyze various circuits. In particular, we 
will analyze linear circuits. They can be of various complexity: 
 - first order 
 - second order 
 - complex circuits (op-amps, ICs). 

Model: The first step in analyzing a physical engineering system is to model it. Models of physical 
systems may be: 
 - linear 
 - non-linear. 

All physical systems are non-linear. We approximate their behaviour with linear models because they 
are easier to analyze. 

Examples: 
Resistor (characterized by resistor R): 

R: constant (Ohm’s Law: v = Ri ) 
R: may be a function of v and/or i 
     R = f (v, i) {nonlinear function} 
R: may be a function of time  
     R = f (t) {time-varying resistor (varistor)} 

 

 

Similarly, for capacitors and inductors: 
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A simple, nonlinear circuit: 

D: diode 

v: f1 (i) 

i: f2 (v) 

 

IC diode: Esaki or exponential diode i = f (v) 

       i = Ise-nv 

                   parameters: Is = 10-10–10-14 (A) 
  n = ~40 (at room temperature) 

This one nonlinear element makes the entire circuit a nonlinear one. 

A common nonlinear circuit is a circuit that consists of transistors and resistors: 

 

The BJT is a nonlinear element. 

Behaviour of nonlinear elements (and circuits) may be approximated by linear elements that capture the 
essential behaviour of interest. Nevertheless, they are only approximations that are valid over a limited 
range of variables (voltages, currents, temperature, time). 

Example: nonlinear diode 

 

 

 



ENSC320 – Electric Circuits II 

 - 3 - 

May be approximated over a certain (limited) range of voltage as a linear resistor. 

 

This linear approximation is valid only over a limited range of V, such that V1 < v < V2. We will assume 
that the circuit models under analysis are linear. This will enable us to apply mathematical tools such as: 

  - differential calculus: equations 
  - transforms: Laplace, Z, Fourier, wavelets 

We will be able to analyze circuits in: 

  - time domain 
  - frequency domain 

Recall ENSC 380: Linear Systems. 

Similar approach, applied to general engineering systems (control systems). 

Linear systems have “nice” properties and the equations emanating from their descriptions have 
analytical (closed form) solutions. Linear systems may be described with ordinary differential equations 
that have closed form solutions. The degree of differential equations depends on the complexity of the 
system. 

We will study 1st and 2nd order circuits. In the time domain (reality), they are described with 1st and 2nd 
order ODEs (ordinary differential equations). 

Note: transmission lines may be modeled as ladder structures of infinite size. They are “distributed” 
linear circuits and are described by partial differential equations (PDEs). 

Linear system: 

 
x(t)        y(t) 

 

A system is linear if and only if the response to x1(t) + x2(t) = y1(t) + y2(t), where 

 x1(t)    y1(t) 
 x2(t)   y2(t) 

for any choice of x1(t) and x2(t). 

system 
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Proposition: if x(t) → y(t) 
     αx(t) → αy(t) 

More generally: 

  αx1(t) + βx2(t) → αy1(t) + βy2(t)  {principle of superposition} 

 

First order Circuits (RC, RL) – Text Ch8, Notes.pdf p120 

- circuits with R and (L or C) 

Supplies:  - arbitrary function generator 
  - DC (direct current) 
  - AC (alternating current) 
  - other waveforms 

Function generator can produce: 

  - sinusoidal 
  - square 
  - sawtooth 
  - triangular 
 
  - step 
  - square pulse 
  - ramp 
  - exponential 

RC circuit: 

 

Ohm’s Law: VR = iR 

  
dt
dVCi =  

            

 

all are periodic} 
all are aperiodic} 

R, C : constants 
 
linear elements --> linear circuit --> linear ODE with 
constant coefficients 

(associated direction) 
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KCL:  iR = iC 

KVL:  VR + V = 0 

Hence:  Z constitutive relationships: VR = iR 

i = C dV 
           dt 

Then,   0=+⋅ V
dt
dVCR   Differential equation 

          

  dV +   1  V = 0   Homogeneous (linear) ODE 
  dt      RC 

Solving the equation, 

∫ ∫ =+
)(

0

0
tV

Vo

t

RC
dt

V
dV  

 
ln V    V(t)   = - 1   · t  
           Vo         RC 

ln V(t) – ln V0 = - t   
       RC 

ln V(t) = - t 
      V0       RC 

V(t) = V0 e-t/RC 

Hence, at t = 0 and V(0) = V0 

  RC: time constant (dimension = time) 

  
RC
1 : characteristic frequency (natural frequency) 

valid for non-linear circuits also} 
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There is another approach to finding the solution to our equation: 

  01 =+ V
RCdt

dv  

Suppose that the solution is of the form  

V(t) = kest where k and s are unknown constants. 

Let us see if we can find these constants by satisfying the equation we are trying to solve. 

V(t) = kest 

 

RC
s

RC
sk

k
RC

ks

ke
RC

kse

V
RCdt

dV

kse
dt

tdV

stst

st

101

01

01

01

)(

−=⇒=




 +

=⋅+

=+

=⋅+

=

 

Thus,   V(t) = V0 e-t/RC 

 
How do we find k? 

It depends on the “initial conditions”. Recall from the previous methods that V(0) = V0. Hence, if we 
know V(t) for some t = t0, we can find k. If V(0) = V0 (as in the previous case), 

Hence, 

becomes 

{s = –1/RC: natural frequency of the circuit} 
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  RCkeV
0

)0(
−

=   ==> V(0) = k and k = V0 

And, as in the previous approach: 

  V(t) = V0 e-t/RC  as expected 

Observations: 

Circuit: - linear with constant parameters R and C 
   - no input 
   - initially stored energy in the capacitor 

Differential Equation: 
   - linear with constant coefficients 
   - homogeneous 
   - non-trivial ( ≠ 0 ) solution 

Let us revisit our simple RC circuit again and make a differential equation in terms of current rather than 
voltage: 

 

Again:   VR = iR 

  
dt
dVCi =  

  VR + V = 0 

  iR + V = 0 ==> V = -iR 

Hence:  )(
dt
diRCi ⋅−⋅=  

  01 =+ i
RCdt

di   (compare to 01 =⋅+ V
RCdt

dV ) 

Both equations have the same format of a solution: 
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  RC
t

Aey
−

=  where A depends on the variable: 

VR 
VC  <-- V 
iR 
iC     i 

If we know the value of y at some instant t1, we can find A: 

  RC
t

Aety
1

)( 1

−
=  

Hence,  RC
t

etyA
1

)( 1=  

 

 

Shape of  iC 

  iR     

 

 

Since VR = iR  (where VR can also have a “jump”) 

Nevertheless, V(t) being the voltage across the capacitor has to be a continuous function of time. 

Why? VC(t) cannot have “jumps”? 

Since,  
dt

dVCi C
C ⋅=   if there is a discontinuity then ∞→Ci . This is impossible in a 

     model that mimics a physical system. 

Summary: 
- write differential equations in terms of VC(t) 

- use one known value of VC(t) at one t to find the constant term in: 

RC
t

CC eVtV
−

=)(  

Usually, VC(0) is known (though not necessarily the only instance). 

  VC(0-) = VC(0+)  

continually holds  instance of closing or opening the switch 

 } 

}
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The RC circuit we have analyzed is the simplest case. A bit more complicated circuit is an RC circuit 
with input. 

 

0

0

=−−

=−

⋅=

⋅=

CRS

CR

C
C

RR

VVV

ii

dt
dVCi

iRV

  

 

 

SC
C

SC
C

SCC

CR

SR

V
RC

V
RCdt

dV

VV
dt

dVCR

VViR

ii
VViR

⋅=⋅+

=+⋅

=+⋅→

=

=+⋅

11

 

 

 

This is a differential equation: 

- linear 
- first order 
- constant coefficients 
- non-homogeneous 

}constitutive relationship 

<-- KCL 
 
 
<-- KVL 

Hence, 

driving force VS(t): function of time 

the same as in the case of the RC circuit 
without input 
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Homogeneous part: 

  01 =⋅+ C
C V

RCdt
dV

 

Method for finding a solution to the complete equation: 

Suppose that we can express the complete solution as: 

  VC(t) = Vh(t) + Vp(t) 

 

 

 

Proof: substitute VC(t) in the equation keeping in mind that 

  Vh(t) satisfies the homogeneous part 
  Vp(t) satisfies the complete equation 

Solution to: 

  01 =+ V
RCdt

dV  

is already known to us (from previous example of RC circuit without a source): 

  RC
t

h keV
−

=  

What is Vp(t)? 

It’s form depends on VS(t) – the right-hand side of the differential equation. 

It is called a particular solution. 

  Vp(t)  (particular because it depends on the type of driving function Vs(t)) 

Case 1: 

  Vs(t) = Vb (battery (DC source) 

  Vb = constant (5V, 10V) 

  Circuit: 

particular solution that depends on Vs(t) 

satisfies the entire 
equation 

homogeneous solution satisfies only 
the homogeneous part of the ODE 
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Since Vs(t) is a constant, it is natural to suspect that Vp(t) may be also a constant. Hence, let us assume 
that 

  Vp(t) = Vp (constant: unknown) 

Since Vp(t) has to satisfy the entire differential equation: 

  
RC
VV

RCdt
dV b

p
p =+ 1  

  Vp is a constant, hence 0≡
dt

dVp  

leads to 

Vp = Vb is a solution. 

The complete solution to the DE is: 

  RC
t

keVbtVc
−

+=)(   k is still unknown 
      Vb is a constant (because Vs(t) is a constant DC source) 

constant k depends on the initial conditions. Usually, Vc(0) 
is known; if capacitor C was not charged: 

  Vc(0-) = 0 and Vc(0+) = 0 (Vc(t) is a continuous function of time) 

Hence, let Vc(0-) = 0, then 

  
bbc

RC
bc

VkkVV
keVV

−=⇒+=+
+=+

−

)0(
)0(

0

 

Our solution is: 

  )1()( RC
t

bc eVtV
−

−=  
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which is the complete solution to our ODE. 

 

At time:  t=0, Vc(0+) = 0 

  bc VVt →∞⇒∞→ )(   {capacitor is being charged} 

Note: are these two circuits equivalent? 

  

  1.       2. 

(again: prove that we can find RC by 
drawing a tangent anywhere) 
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Case 2: 

 

Again, 

  

)()()(
)(

)()()(

)(11

tuBtAtVp
ketVh

tVhtVptV

tV
RC

V
RCdt

dV

RC
t

c

sc
c

+=
=

+=

=+

−

 

  where (A + Bt)u(t) is a more general form of t·u(t) 

Unknowns are A, B and k (where k is a constant based on initial conditions). This is important in order 
to arrive at the most general (family) solution. 

Case 3: 

 

)()( tueVtV st
ss ⋅=   (u(t) ensures that 0)( ≡tvs  for t < 0 ) 

  
RC
t

sc
c

keVptVc

tV
RC

V
RCdt

dV

−
+=

=+

)(

)(11
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   stAetVp =)(   (what if 
RC

s 1= ?, a special case to consider) 

 

Case 4: 

   

        Vs = 15V 
        R = 200 
        C = 10 uF 

(see pp120-154 of the ENSC220 Notes.pdf) 

A similar approach applies to solving higher order ODEs, emanating from higher order circuit models 
(see pp155-244, ENSC220 Notes.pdf) 

 

General approach      Text 

Circuits are: - linear      Ch.8 1st order 
  - lumped (not distributed)   Ch.9 2nd order 
  - constant coefficients     circuits 

They are described by linear, ordinary DEs with constant coefficients. 

What should be the variables chosen to appear in the final differential equation(s)? 

State Variables: 

  all other variables can be then expressed via: 

   - constitutive relationship 

   - KCL/KVL 

- simple integration or differentiation stemming from the constitutive relationship 
for circuit elements 
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A systematic way of writing equations: 

KCL: iR = iL = iC 

  

dt
dVCi

tVV
dt
diLRi

c
L

sc
L

L

=

=++ )(
 

DE: 

  

L
c

scL
L

i
Cdt

dV

tV
L

V
L

i
L
R

dt
di

1

)(11

=

+−−=
 

Matrix form: 

  )(
0

1

01

1
tVL

Vc
i

C

LL
R

V
i

dt
d

s
L

c

L







+
















 −−
=





 

where  iL = current through L 
  Vc = voltage across C 
  and both iL and Vc are state variables 

  

)(
0

1

01

1

tVLb

C

LL
R

A

bAx
dt
dx

s





=












 −−
=

+=

 

A: depends on circuit topology and circuit elements and their values 

b: depends on circuit topology, elements and their values and the type of sources 
connected to the circuit. 

Complete equation (matrix form): 
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  bAx
dt
dx +=  

Homogeneous equation 

  Ax
dt
dx =  

Suppose that the solution is of the form: 

  ste
k
k

x 





=

2

1   ste
k
k

s
dt
dx







⋅=

2

1  

Substitution into the homogeneous equation leads to 

  
0)(

2

1

2

1

2

1

=





−⋅







⋅=





⋅

st

stst

e
k
k

AIs

e
k
k

Ae
k
k

s
 (Note: est ≠ 0 and 





≠





0
0

k
k

2

1 , ==> trivial solution) 

Hence, the only other nontrivial solution (x(t) ≡ 0) is for: 

  det ( s · I – A ) = 0  Note:  ( s · I – A )-1 does not exist (is a singular matrix) 

For the case we consider (RLC circuit) 

  










 −−
=

01

1

C

LL
R

A  

gives 

  01

1
det =













−

+

sC

LL
Rs

 

or 

  
01

01)(

2 =++

=++

LC
s

L
Rs

LCL
Rss

 

Solutions of this equation with natural frequency of the circuit: 

  
LCL

R
L

Rs 1)
2

(
2

2
2/1 −±−=  

characteristic equation. 
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  2

2

2/1 4
1

2 L
R

LC
j

L
Rs −±−=  

  ωα js ±−=2/1  
L

R
2

=α  2

2

4
1

L
R

LC
j −=ω  

Case 1:  s1 and s2 are real and distinct 

  tsts
c ekektV

h

21
21)( +=   s1/2: real, negative 

Case 2:  s1 = s2 

  α−=1s  
L

R
2

=α  

  tt
c tekektV

h

αα −− += 21)(  

Note: the most general form has to be considered. Form k1e-αt + k2e-αt is not general and it simplifies to 
ke-αt . 

Case 3:  s1/2 = -α ± jω 

  

)sin()(

)sincos()(

}sin)(cos){()(

)()(

)(

2121

21

21
21

θω

ωω

ωω

α

α

α

ωωα

+=

+=

−++=

+=

+=

−

−

−

−−

tVetV

tBtAetV

tkkjtkketV

ekeketV

ekektV

t
c

t
c

t
c

tjtjt
c

tsts
c

h

h

h

h

h

 

  Unknown constants: k1 A V 
     k2 B θ 

 

They are to be found from the initial conditions: 

  VC(0-) ≡ VC(0+) 

  iL(0-) ≡ iL(0+)  <-- substitute t = 0 in the expressions 

We also need particular solutions that depend on the form of the forcing function. 

  VS(t) = Vbu(t)   

  







=






2

1

)(
)(

k
k

tpV
tpi

C

L  

equivalent representations 
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where 

  





)(
)(
tpV
tpi

C

L   satisfy the entire DE equation 

  








2

1

k
k

  are unknowns 

  bVL
k
k

C

LL
R







+





⋅











 −−
=








0

1

01

1

0
0

2

1  {general procedure: Text Chapter 9} 

 


