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Example: (DeCarlo, Lin Example 9.7) 
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Matrix equation: 

    s
L

c

L

c vRCi
v

L

CRC
i
v

dt
d ⋅












+








⋅















 −−
=









0

1

01

11

 

 
Note that once we know vc and iL, all other circuit variables can be found from them. 
 

Example:   
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canonical form:  BuAxx
dt
d +=  

 
where x ={vector of the state variable], A = {matrix}, B = {column 
vector}and u = {input} 

 
Zero state response: 
  - all initial conditions set to 0 
    vc(0-) = 0 
    iL(0-) = 0 
   Hence: 
    vc(0+) = 0 
    iL(0+) = 0 
 
Zero input response: 
  - vs(t) ≡ 0 
  - trivial solution if all initial conditions are set to 0 
  - non-trivial solution if 
    vc(0-) ≠ 0 and/or iL(0-) ≠ 0 
   therefore 
    vc(0+) ≠ 0 and/or iL(0+) ≠ 0 
 
Zero input response: solution to the homogeneous DE (RHS ≡ 0) 
 
Hence, zero input response is equivalent to the homogeneous solution of the DE. Zero state response is 
the equivalent to the sum of the particular solution and the homogeneous solution of the DE: 

)()( 21
21 txeKeKtx p

tsts ++=  
           K1 and K2: initial conditions 
 xp(t) ≡zero if input is zero 
 
In our example: 
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Assume that the solution is x = est, for u ≡ 0 (homogeneous case) 
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Let us find vc(t), when vs(t) is a step function: 
 

 
    vc(t) = vc(t)+ vcp(t) 
 
Let us consider zero state response: all initial conditions are set to zero 
 
    tsts

ch ekektv 21
21)( +=  

 
    vcp(t) = ? (constant, because the Vs is constant) 
 
Assume   vcp(t) = A 
 

Note: the same as in the series 
RLC case 

vs(t) = Vs·u(t) 
 
        = 0, t < 0 

Vs, t ≥ 0 
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Assume also that iLp(t) is a constant B 
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Case 1:  s1 ≠ s2 : real, negative. 
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Note: s1 > s2 
 
Roots:      s-plane 

 
 
s1: closer to the origin  : slowly decaying term 
s2: further from the origin : faster decaying term 
 
Case 2:  s1 ≠ s2 :complex, conjugate  
 
Why do they come in pairs? 
General property of systems with real coefficients 
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Euler’s formula:  ejat – e-jat = [cos(at) + jsin(at)] – [cos(at) – jsin(at)] 

     = 2jsin(at) 
Hence: 
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imaginary part: 
  larger frequencies: faster oscillations (further from the origin) 
 
real part: 
  further from the origin: faster decay 
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Case 3: s1 = s2 = 
RC2
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In summary: 
- obtain DE: KCL, KVL, constitutive relationship for R, C, L 
- from known initial conditions, get the values of state variables at 0+ 
- from known initial conditions and the DE, find values of the derivatives of state variables at 0+ 
- conjecture the particular (steady-state) solution by looking at the forcing (source) function 
 
Solution:   x(t) = xh(t) + xp(t) 
 
- all done in the time domain. 
 
Is there a simpler way? 
 

 

root further from the origin 
produces faster response 
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Yes: by using transformation to a frequency (s) domain (Laplace transforms). 
 
 
 
 


