ENSC320 — Electric Circuits 11
Example: (DeCarlo, Lin Example 9.7)

VS<+> YemmC L |1,

State variables: ve(t)
i(t)
State equations: i=i, +i,
d
i.=C Ye
dt
di,
v, =L—
LT ar
KCL: i=i, +i,
KVL: V.=V,
v, =Ri+v,
Hence: v, =R-(i, +i, )+,
i =C dv,
dt
di
v =%
dt
or:
d 1 1
i, +C Ye +—v, =—-v,
dt R R
di 1,
da L =
Finally,
dv, 1 1 . 1
=—— vV, ——i, +
dt RC C RC-v, -
state equations
di, 1
dt L-v
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Matrix equation:

1 1

- —-— 1
d |V, v,
—dt[. }= ke C { }+ RC |V,
l 0 1 0

L

Note that once we know v, and 1y, all other circuit variables can be found from them.

Example: =t Ve
R
o BN
in matrix form: i=l RI|I1. |+="v,
0 15 R
canonical form: d—x = Ax+ Bu
t

where x ={vector of the state variable], A = {matrix}, B = {column
vector}and u = {input}

Zero state response:
- all initial conditions set to 0

ve(0-)=0
i (0-)=0
Hence:
ve(0+)=0
iL(0+) =0

Zero input response:
-vs(1) =0
- trivial solution if all initial conditions are set to 0
- non-trivial solution if
ve(0-) # 0 and/or i (0-) #0
therefore
ve(0+) #0 and/or i (0+) #0

Zero input response:  solution to the homogeneous DE (RHS = 0)

Hence, zero input response is equivalent to the homogeneous solution of the DE. Zero state response is
the equivalent to the sum of the particular solution and the homogeneous solution of the DE:

x(t)=Ke" +K,e™ +x,(1)

K, and K;: initial conditions
Xp(t) =zero if input is zero

In our example:
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@zAx+Bu

dt
IS

4=| RC C
Loy
L

Assume that the solution is x = e*, for u = 0 (homogeneous case)

dx
—_— =95
dt

s-e"-I=4-e" where I = {identity matrix }

(s-1—A)-e" =0=det(s-]—A) =0

) 1 1
S Tt—s+—=
RC LC
1 1Y 1
Again: Sy, =— + _ Note: the same as in the series
2RC 2RC LC RLC case

Let us find v.(t), when v4(t) is a step function:

Ve

vs(t) = Vsu(t)

=0, t<0
Vi, t>0

4)
s

4

Ve(t) = Ve(D)+ vep(t)

Let us consider zero state response: all initial conditions are set to zero
v, (t) = ke™ + k,e"™
Vep(t) =7 (constant, because the Vs is constant)

Assume vep(t) = A
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DE. dvc :_L_vc _llL +L.vs
dt RC L RC
di, _1
d L °

Assume also that i (t) is a constant B

then: Oz—L-A—l-B+L-vS
RC L RC

0=1. 4= 4=0
L

Hence:
v, (t)=ke" + k,e™
v, (0-)=0
v.(O+) =k, +k, = k, +k, =0
dv .
dtc =kse™ +k,s, e’
dv
d; = ks, +k,s,
0
d
From the DE: Ve :—L'Vc—ll'L-FL'VY
dt RC L RC
dv, 1
=—"V
dat|,, RC
ks +k,s —L-v
171 202 RC s
Hence:
1
S Y
RC(s, —s,)
h=e—
RC(s, —s,)
Case 1: s; # s, : real, negative.
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Neer) __ Uyt
" 2rCc \\2rC) LC
2 3o, Ly o
r * 2rC \\2rC] LC
l »
) t N R
s = — | -——
St . 2RC | LC
V.
vc (t) — s - (e.vlt e.vzt)
2RC ! b
2RC LC
Note: 81> s,
Roots: s-plane
A A M
e \
i
—¢— ‘#S, \ Re
Sy (
\ (
"'9“ o ‘\é—
4 { LN\ A
2R¢, e
si: closer to the origin : slowly decaying term
sp: further from the origin  : faster decaying term
Case 2: s; #s2 :complex, conjugate

Why do they come in pairs?
General property of systems with real coefficients



ENSC320 — Electric Circuits 11

St
%( X S
—+ -
L >
HRC .
X ¢ = 1 tj I (1
2 3‘/1 V2= "9rc 1L "\ 2RC
t .L_th —‘L_th
v.(t)= v, .e 2RC ej e [2RC] —e jm
¢ 2
) iRC Jl_(l)
LC | 2RC
Euler’s formula: & — e = [cos(at) + jsin(at)] — [cos(at) — jsin(at)]
= 2jsin(at)
Hence:

t 2
v ()= s e 2RCgin LI t
‘ 1 1 Y LC | 2RC
RC ( )

- tlape o JL_(;)Z
Sure L"GJ? . e LC | 2RC
/ s : period = ! =
- 1 _(1)
W \/LC 2RC

imaginary part:
larger frequencies: faster oscillations (further from the origin)

real part:
further from the origin: faster decay



Case 3:s1 =5, = —L

2RC

Hence:

New) Y

In summary:
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2
(L) _ Ly Si=52
2RC | LC , L -
LC =(2RCY A

v (t)=(k + kzt)eSt

v.(0)=0=k =0
dv, 14

dt RC
dv,

= k,e" +s(k, +k,t)e”

0

dv,

o =k, + sk,

e

S

RC

2

t

V -
v (1) =——te %€
(D RO

root further from the origin
produces faster response

+

- obtain DE: KCL, KVL, constitutive relationship for R, C, L
- from known initial conditions, get the values of state variables at 0+

- from known initial conditions and the DE, find values of the derivatives of state variables at 0+
- conjecture the particular (steady-state) solution by looking at the forcing (source) function

Solution:

- all done in the time domain.

Is there a simpler way?

x(t) = xh(t) + xp(t)
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Yes: by using transformation to a frequency (s) domain (Laplace transforms).



