SIMON FRASER UNIVERSITY SCHOOL OF ENGINEERING SCIENCE

Summer 2012 ENSC 320: ELECTRIC CIRCUITS II

Midterm Examination Monday, July 16, 2012

Duration: 110 minutes. Attempt all four problems. Questions are not equally weighted. Closed book and closed notes. Calculators, PDAs, laptops, and wireless phones are not permitted. Use a ball-point pen for writing the exam (no pencils, please).

1. Laplace Transform Analysis: Circuit Applications (20 points)

Consider the switched RLC circuit shown in Figure 1. Suppose the switch has been in position A for a long time and moves to point B at t = 0. Suppose $v_{in}(t) = 50$ V.

- Find $i_L(t)$ and $v_C(t)$ at $t=0^-$.
- Find $v_C(t)$ for t > 0.
- Sketch $v_C(t)$ for $t \geq 0$.

2. Laplace Transform Analysis: Transfer Function Applications (30 points)

Consider the circuit shown in Figure 2, where $R_1 = 50 \Omega$, $R_2 = 200 \Omega$, and C = 2.5 mF.

- Find the circuit's transfer function.
- Let $v_{in}(t) = 10e^{-2t}u(t) V$ and $v_c(0_-) = 4 V$.
 - Use Laplace transform to find the complete response of the circuit by first finding the zero-state response and the zero-input response.
 - Identify the circuit's forced response and natural response.
 - Identify the circuit's steady-state response and transient response.
- Let $v_{in}(t) = 10e^{-10t}u(t) V$ and $v_c(0_-) = 0 V$. Is the forced response well defined? Justify your answer.

3. The Convolution Method (20 points)

Consider the circuit shown in Figure 3. Suppose that the input excitation is $v_{in}(t) = e^{-a|t|}$ V, where $a \neq 1$ and a > 0.

- Find the circuit's impulse response.
- Determine the response $v_{out}(t)$ for all t.

4. Resonant and Bandpass Circuits (30 points)

For the bandpass circuit shown in Figure 4:

- Find the transfer function $H(s) = I_L(s)/V_{in}(s)$.
- Find ω_m , H_m , and B_{ω} .

