Simulation and Wavelet Analysis of Packet Traffic

Bruce Chen, Zelimir Lucic, and Ljiljana Trajkovic, {bchenb, zlucic, ljilja}@sfu.ca, http://www.ensc.sfu.ca/research/cnl Communication Networks Laboratory, School of Engineering Science, Simon Fraser University

1. Traffic:

- · Complex traffic patterns arise from multiplexed data, voice, and video
- Traditional traffic models fail to capture essential traffic characteristics
- Traffic often exhibits long-range dependent (self-similar, fractal) behaviour
- Current traffic models should capture long-range dependent traffic characteristics

Trace	Mean bit rate (Mbps)	Hurst parameter	
Silence of the Lambs	0.18	0.89	
Terminator 2	0.27	0.89	
MTV	0.49	0.89	
Simpsons	0.46	0.89	
Talk Show 1	0.36	0.89	
Jurassic Park 1	0.33	0.88	
Mr. Bean	0.44	0.85	
News	0.38	0.79	
Star Wars	0.36	0.74	
Talk Show 2	0.49	0.73	

104

FIFO/DropTail 46 packet buffer FIFO/DropTail 200 packet buffer RED 46 packet buffer

6 8 10 12 Length of loss episode (packet:

2. Simulation topology and scenario:

- We analyze the impact of traffic on the Quality of Service (QoS) in packet networks
- We use trace-driven network simulations (using ns-2)
- MPEG-1 traffic is transmitted over UDP/IP (User Datagram Protocol/Internet Protocol)
- UDP is suitable for real-time applications because of small delay
- Buffer size of the router is set according to delay requirements
- · Router employs five different queuing schemes:
 - 1. FIFO/ DropTail
 - 2. Random Early Drop (RED)
 - 3. Fair Queuing (FQ)
 - 4. Stochastic Fair Queuing (SFQ)
 - 5. Deficit Round Robin (DRR)

4. Wavelet analysis of packet loss:

- Traffic traces exhibit long range dependency (LRD) for time scales of 2⁵ ° 40ms » 1s.
- Loss traces also exhibit LRD for time scales of 2¹⁰ ⁰ 1ms » 1.2s
- The loss process capture the LRD characteristic of the traffic

Wavelet LRD estimator of 30-minute News traffic trace

Wavelet LRD estimator of loss trace Buffer sizes: 46, 100, 200 packets Packet size: 552 bytes

- The LRD behaviour is present regardless of the buffer size
- These properties indicate self-similarity in loss processes

3. Packet loss:

- Simple loss statistics cannot capture complexity of loss patterns
- We characterize packet loss using loss episodes
- Real-time applications often more susceptible to consecutive packet losses
- · Loss episodes reflect the burstiness of packet loss

Aggregate loss: Two loss episodes, one of length 3 the other of length 2 Per-flow loss:

- Flow 1: One loss episode of length 2
- Flow 2: Two loss episodes, one of length 1 the other of length 2

ASI Exchange March 12, 2002