
User Clustering and Traffic
Prediction in a Trunked Radio

System
Hao (Leo) Chen

lcheu@cs.sfu.ca

Simon Fraser University

User Clustering and Traffic Prediction in a Trunked Radio System – p.



ROADMAP

• Introduction
• E-Comm network
• Traffic data
• User clustering
• Traffic prediction
• Conclusions
• Reference

User Clustering and Traffic Prediction in a Trunked Radio System – p.



ROADMAP

• Introduction
• E-Comm network
• Traffic data
• User clustering
• Traffic prediction
• Conclusions
• Reference

User Clustering and Traffic Prediction in a Trunked Radio System – p.



MOTIVATION

• Analysis of traffic from operational wireless networks
enables:

• better understanding of user behavior patterns

• better quality of service.

• Traffic prediction methods:

• “Top-down” approach: based on aggregate traffic.

• “Bottom-up” approach: focuses on individual users.

• Our approach: user cluster based prediction.
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PRIOR DATA ANALYSIS

• User behavior and mobility patterns exhibit daily and
weekly patterns [Tang and Baker, 1999].

• User behavior in Cellular Digital Packet Data (CDPD)
mobile wireless networks has similar cyclic patterns
[Andriantiatsaholiniaina and Trajković, 2002].

• Trunked radio network traffic [Sharp et al., 2004]:

• call holding time distribution is approximately
lognormal

• call inter-arrival time is closely approximated by an
exponential distribution.
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OUR RESEARCH

Data preparation
* database setup
* data cleaning
* traffic extraction

 Data analysis
* aggregate traffic
* agency level
* talk group level

Data clustering
* AutoClass
* K-means

E-Comm traffic
log database

Traffic prediction
* SARIMA models
* aggregate traffic
* cluster based
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E-COMM NETWORK

• Regional emergency communications center.
• Covers Greater Vancouver Regional District

(GVRD) – 11 systems/cells.
• Provides emergency dispatch/communication

services.
• Serves 16 agencies such as RCMP, fire and

rescue, police, and ambulance.
• Employs Enhanced Digital Access

Communications System (EDACS).

User Clustering and Traffic Prediction in a Trunked Radio System – p.



E-COMM NETWORK COVERAGE
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GROUP/MULTI-SYSTEM CALLS

• A group call is a standard call made in a
trunked radio system.

• EDACS network operators have observed
that more than 85% of calls are group calls.

• A multi-system call is a single group call
involving more than one system/cell.

• More than 55% of group calls are
multi-system calls.
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TRAFFIC DATA

• Raw event log generated from a distributed database
system.

• Events generated in the network from March 1st

00:00:00 2003 to May 31st 23:59:59 2003.

• The size of the original data is ∼ 6 GBytes, with
44,786,489 record rows for the 92 days of data.

• From the 26 original fields in the database, 9 fields are
of interest for our analysis.
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DATA SAMPLE

no. event_utc_at dur. sys. ch. caller callee

1 03-03-01 00:00:00.30 1340 1 12 13905 401

4 03-03-01 00:00:00.259 3330 6 3 14663 249

6 03-03-01 00:00:00.489 1350 7 4 13905 401

7 03-03-01 00:00:00.590 2990 6 4 4266 1443

29 03-03-01 00:00:03.620 7550 2 7 13233 249

30 03-03-01 00:00:03.700 2980 9 7 16068 673

31 03-03-01 00:00:03.760 7560 1 3 13233 249

32 03-03-01 00:00:03.830 1580 2 8 13333 245

37 03-03-01 00:00:04.260 7560 7 6 13233 249

38 03-03-01 00:00:04.340 7560 6 6 13233 249
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DATA CLEANING/EXTRACTION

• Data cleaning: reducing database dimension,
filtering outliers, removing redundant records.

• Traffic extraction: use single entry to replace
multiple records for multi-system calls.

• ∼55% records removed after cleaning.
• ∼20% records remained after extraction.

User Clustering and Traffic Prediction in a Trunked Radio System – p. 14



CALLING BEHAVIOR PATTERN

• The basic talking unit in the E-Comm network is the
talk group and the basic behavior is making a call.

• An important calling behavior pattern in the voice
network is the number of calls.

• Hourly number of calls is used to represent the calling
behavior pattern of talk groups.

• The collected 92 days of traffic data (2,208 hours)
permitted each talk group’s calling behavior pattern to
be captured by the 2,208 hourly number of calls.
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SAMPLE OF CALLING PATTERNS
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CLUSTERING ALGORITHMS

• Clustering analysis groups or segments a collection of
objects into clusters.

• Objects within a cluster are more similar to each other
than objects in distinct clusters.

• An object can be described by a set of measurements
or by its relations to other objects.

• AutoClass [Cheeseman and Stutz, 1996] and
K-means [Kaufman and Rousseeuw, 1990] algorithms
are used to classify calling patterns of talk groups.
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ALGORITHM: AutoClass

• An unsupervised classification tool based on the
classical finite mixture model.

• Begins by creating a random classification and then
manipulates it into a high probability classification
through local changes.

• Repeats the process until it converges to a local

maximum.

• Starts over again and continues for a specified number
of tries.
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ALGORITHM: K-means

• Based on the input parameter k, it partitions a set of n

objects into k clusters so that the resulting intra-cluster
similarity is high and the inter-cluster similarity is low.

• Intra-cluster similarity is measured with respect to the
mean value of the objects in a cluster.

• K-means is well-known for its simplicity and efficiency.

• Own implementation and pam() function in R system.
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AutoClass: CLUSTERS PLOT
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K-means: CLUSTER RESULTS

• We tested the performance of K-means for: K = 3, 6,
and 16.

• The Euclidean distance was used as the distance
function to measure the similarity among talk groups.

• Overall quality is defined as the minimum inter-cluster
distance minus the maximum intra-cluster cluster
distance.

• 3 is the best number of clusters, in terms of
inter-cluster, intra-cluster distance, and overall quality.
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K-means: CLUSTER RESULTS

Num Sizes Avg. Avg. Max. Min. Overall

(K) intra inter intra inter quality

3 17,31 1882.14 4508.38 2971.76 1626.4 -1345.36

569

6 13,17 2059.67 3284.52 3299.43 594.21 -2705.21

22,3

34,528

9 ... 1020.08 3520.04 3065.25 808.28 -2256.96

12 ... 1372.67 3582.98 3278.14 731.26 -2546.88

16 ... 983.63 1815.79 3571.27 248.19 -3323.07
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K-means CLUSTER PLOT
Cluster 1 (17 talk groups)
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K-means CLUSTER PROPERTIES

Cluster Min. Max. Avg. Total Total

size N.C. N.C. N.C. N.C. N.C. (%)

17 0 - 6 352 - 700 94 - 208 5,091,695 59

31 0 - 3 135 - 641 17 - 66 2,261,055 26

569 0 1 - 1613 0 - 16 1,310,836 15

(N.C.: Number of calls)
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ARIMA MODELS

• The Autoregressive Integrated Moving
Average (ARIMA) models were developed by
Box and Jenkins in 1976.

• ARIMA notation (ARIMA (p, d, q)).
• Autoregressive model: AR(p)

Xt = φ1Xt−1 + φ2Xt−2 + ... + φpXt−p + Zt.

• Moving average model: MA(q)
Xt = Zt + θ1Zt−1 + ... + θqZt−q.

• Number of differencing. (D)
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SARIMA MODELS

• Seasonal ARIMA: ARIMA plus seasonal period.

• A SARIMA (p, d, q) × (P,D,Q)S model can be
represented as:

φ(Bs)φ(B)(1 − Bs)D(1 − B)dXt = θ(Bs)θ(B)Zt,

where φ(B) and θ(B) represent the AR and MA parts,
φ(Bs) and θ(Bs) represent the seasonal AR and
seasonal MA parts.

• B is the back-shift operator (BiXt = Xt−i).
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ARIMA MODEL BUILDING

• Model identification
• (p, d, q, P, D, Q, S)

• Model estimation
• φ(x), θ(x)

• Model verification
• residual analysis
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SARIMA MODELS & NMSE

• SARIMA models (2, 0, 1) × (0, 1, 1)24 and
(2, 0, 1) × (0, 1, 1)168 were selected to predict the future
n hours traffic data, based on m hours past traffic data.

• Normalized mean square error nmse was used to
measure the prediction quality:

nmse(a, b) =
m+n∑

i=m+1

(ai − bi)
2

(ai − ā)2
,

where ai is the observed, bi is the predicted data, and ā

is the mean value of ai.
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PREDICTION RESULTS

p d q P D Q S m n nmse

2 0 1 0 1 1 24 1,920 24 0.1941

3 0 1 0 1 1 24 1,920 24 0.1907

2 0 1 0 1 1 24 1,680 168 0.4079

3 0 1 0 1 1 24 1,680 168 0.4081

2 0 1 0 1 1 168 1,920 24 0.0969

3 0 1 0 1 1 168 1,920 24 0.1012

2 0 1 0 1 1 168 1,680 168 0.1745

3 0 1 0 1 1 168 1,680 168 0.1748
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PREDICTION VISUALIZATION
• Comparison of (2, 0, 1) × (0, 1, 1)24 to

(2, 0, 1) × (0, 1, 1)168 (m:1680, n:168)
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CLUSTER BASED PREDICTION

• Talk groups were partitioned into three clusters.

• SARIMA models (2, 0, 1) × (0, 1, 1)24 and
(2, 0, 1) × (0, 1, 1)168 are applied for each cluster to
predict the traffic.

• Predict of network traffic by aggregating the traffic
predicted from three clusters of users.

• Optimize the prediction for “bad” cluster prediction.
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PREDICTION RESULTS

no (p,d,q) (P,D,Q) S m n nmse

1 (2,0,1) (0,1,1) 24 1680 48 1.1954

2 (2,0,1) (0,1,1) 24 1680 48 2.4519

3 (2,0,1) (0,1,1) 24 1680 48 0.3701

* (2,0,1) (0,1,1) 24 1680 48 0.6298

A (2,0,1) (0,1,1) 24 1680 48 0.6256

O (2,0,1) (0,1,1) 24 1680 48 0.4231
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PREDICTION RESULTS (cont.)

no (p,d,q) (P,D,Q) S m n nmse

1 (2,0,1) (0,1,1) 168 1,920 24 0.2241

2 (2,0,1) (0,1,1) 168 1,920 24 0.3818

3 (2,0,1) (0,1,1) 168 1,920 24 0.1163

* (2,0,1) (0,1,1) 168 1,920 24 0.0969

A (2,0,1) (0,1,1) 168 1,920 24 0.1175
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PREDICTION SUMMARY

• SARIMA(2, 0, 1) × (0, 1, 1)24 model

• 14% prediction based on cluster traffic beats
prediction based on aggregate traffic.

• 87% optimized prediction based on cluster traffic
beats prediction based on aggregate traffic.

• SARIMA(2, 0, 1) × (0, 1, 1)168 model

• 59% prediction based on cluster traffic beats
prediction based on aggregate traffic.

• None of the optimized prediction based on cluster
traffic beats prediction based on aggregate traffic.
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CONCLUSIONS

• We analyzed traffic data collected from an operational
trunked radio network.

• We used the K-means algorithm and AutoClass to
classify network users into user clusters.

• We predicted network traffic using the SARIMA model
based on aggregate user traffic and based on three
user clusters.

• Some user cluster based prediction perform better
than the aggregate traffic based prediction.
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CONCLUSIONS - contributions

• Analyzed real-world data and problems.
• Applied clustering algorithms on real data.
• Proposed cluster based prediction method.
• Compared cluster based prediction with

traditional prediction method.
• Paper published on International Symposium

on Wireless Communication Systems 2004
(http://www.ieeevtc.org/iswcs04).
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FUTURE WORK

• Test various clustering algorithms.
• Compare with other prediction models (HMM,

FARIMA).
• Integrate with simulation tool (WarnSim).
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THE END

THANKS !
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