OPNET Technologies, Inc.

OPNETWORK 2004

Session 1352 VoIP and Circuit-to-Packet

OPNET Implementation of the Megaco/H.248 Protocol: Multi-Call and Multi-Connection Scenarios

Edlic Yiu, Edwood Yiu, and Ljiljana Trajković {enyiu, eyiu, ljilja}@cs.sfu.ca

Presenter: Kun (Karen) Wu

Communication Networks Laboratory Simon Fraser University Vancouver, British Columbia, Canada

Roadmap

- Introduction
- Megaco/H.248 and VoIP
- Design architecture
- Design considerations
- OPNET implementation
- Call flow scenarios
- Simulation results
- Conclusion

Introduction

- Voice over IP (VoIP) is getting popular in both commercial and residential markets.
- It enables a telecommunication company to cut costs by allowing a single network to transmit both data and voice traffic.
- Offers inexpensive rate for long distance calls.
- Voice quality resulting from packets transmitted over the IP network is comparable to the voice quality in Public Switched Telephone Network (PSTN).
- To control and manage the voice traffic, Megaco/H.248 signaling protocol was introduced by Internet Engineering Task Force (IETF) and International Telecommunication Union (ITU).

OPNETWORK 2004 Gateway architecture Employs the master/slave architecture Database Media Gateway Controller MEGACO / H.248 ---- Voice Packets IP Network Æ IP Phone **IP** Phone Media Gateway Media Gateway

Gateway architecture

- Media Gateway Controller (MGC):
 - central point of intelligence for call signaling
 - maintains the state of each MG and responds appropriately to any event notification
- Media Gateway (MG):
 - a dumb terminal
 - waits for the command from the MGC for its next action
 - streams voice packets over the IP network
 - de/compresses RTP packets

Megaco/H.248 command set

$[\mathsf{MGC}\leftrightarrow\mathsf{MG}]$

ServiceChange

Notify the responder of the new service state

$[\mathsf{MGC}\to\mathsf{MG}]$

- AuditValue
- AuditCapabilities
- Add
- Modify
- Subtract
- Move

$[\mathsf{MG}\to\mathsf{MGC}]$

Notify

Determine the characteristics of an endpoint

- Determine the capabilities of an endpoint
 - Add a connection
- Change a connection characteristic
- Tear down a connection
- Move an endpoint from one connection to another connection (call-waiting)

Notify the responder of an event (on-hook)

MGC component responsibilities

Component	Responsibility
Message Receiver	 Receive MEGACO messages from the MGs Extract parameters from MEGACO messages Redirect message parameters to MP
Message Processor	 Receive message parameters from MR Read statuses of the related MGs Determine actions for the related MGs Request MS to compose response messages if necessary
Message Sender	 Receive requests from MP Compose MEGACO messages Send MEGACO messages to the MGs

Design architecture: MG

MG component responsibilities

Design considerations

- Unlimited number of MGs
 - In order to support the multi-call and multi-connection scenario, MG architecture needs to support an unlimited number of MGs.
- Control intelligence in MG
 - We consider three cases for the Subtract command to illustrate the complexity in the multi-call and multiconnection scenarios.

Control intelligence in MGC

- Three scenarios are used to validate the control intelligence in MGC.
- Scenario 1

MG object attributes

(MG 2) Attributes		
Attribute	Value 🛆	
⑦ name	MG 2	
(?) - model	megaco_mg_node	
⑦ – MG IP Address	172.16.0.3	
⑦ – MG IP Port	5555	
⑦ – MG Transaction ID	2000	
MGC IP Address	172.16.0.1	
⑦ – MGC IP Port	2944	
🕐 – User Dial-Up IP Address	172.16.0.4	
User Flash-Hook 1 Time (sec)	110	
User Flash-Hook 2 Time (sec)	130	
User Off-Hook Time (sec)	50	
User On-Hook Time (sec)	170	
Apply Changes to Selected Objects		
<u>E</u> ind Next <u>C</u>	ancel <u>O</u> K	

Copyright © 2004 OPNET Technologies, Inc. Confidential, not for distribution to third parties.

OPNET implementation: Media Gateway Control

MGC Node Model

- The MGC processor is responsible for:
 - parsing MEGACO/H.248 messages
 - determining necessary actions for the MGs
 - composing the MEGACO/H.248 messages.

OPNET implementation: Media Gateway Control

MGC Process Model

- The MG processor is responsible for:
 - handling MEGACO/H.248 commands sent from the MGC
 - detecting events initiated by the user
 - generating Real-Time Transport Protocol (RTP) packets for voice transmission.

Copyright © 2004 OPNET Technologies, Inc. Confidential, not for distribution to third parties.

- 1. MG1, MG2, and MG3 register with MGC
- 2. MG1 connects to MG2
- 3. MG3 calls MG2
- 4. MG2 switches to MG3, while MG1 is on hold
- 5. MG3 hangs up, and MG2 switches to MG1
- 6. MG2 hangs up

Subset of call-waiting scenario: call release

```
[1] MGC received the following message:
MEGACO/1 [172.16.0.3]:5555
Transaction = 2003 {
Context = - \{
Notify = ui {
ObservedEvents = 5 {
20030414T145870:key/ku}}}
[2] MGC just sent message to MG:
MEGACO/1 [172.16.0.1]:2944
Reply = 2003 {
Context = - \{
Notify = ui}
[3] MGC just sent message to MG:
MEGACO/1 [172.16.0.1]:2944
                                           },
Transaction = 25 {
Context = 1 \{
Subtract = at/hf,
Subtract = tr}
[4] MGC received the following message:
MEGACO/1 [172.16.0.2]:5555
Reply = 25 {
Context = 1 {
```

Subtract = at/hf, Subtract = tr { Statistics { rtp/ps=38, rtp/pr=34, rtp/pl=3, rtp/jit=0}}} [5] MGC just sent message to MG: MEGACO/1 [172.16.0.1]:2944 Transaction = 26 { $Context = - \{$ Modify = ui { Events = 11 $\{key/kd\}$ Modify = at/hf { Signal = $\{\}\}\}$ [6] MGC received the following message: MEGACO/1 [172.16.0.2]:5555 Reply = 26 { $Context = - \{$ Modify = ui, Modify = at/hf}

MG 2

- 1. All MGs register with MGC
- 2. MG2 connects to MG3
- 3. MG1 calls MG2, and MG4 calls MG3
- 4. MG2 switches to MG1, while MG3 switches to MG4

MC:

- 5. MG2 and MG3 switches back, while MG1 and MG4 are put on hold
- 6. MG3 hangs up
- 7. MG4 gets removed from the inactive connection
- 8. MG2 switches back to MG1
- 9. MG2 hangs up

- 1. All MGs register with MGC
- 2. MG1 connects to MG2, while MG4 connects to MG5
- 3. MG3 calls MG2
- 4. MG2 switches to MG3, while MG1 is put on hold
- 5. MG3 hangs up, and MG2 switches back to MG1
- 6. MG2 and MG4 hang up.

Conclusion and future work

- We described the OPNET implementation of Megaco/H.248 signaling protocol.
- The OPNET implementation of Megaco/H.248 protocol supports an unlimited number of MG interconnections.
- Several call flow scenarios between the MGC and MGs were simulated to verify the implementation.
- Future work:
 - implementation of the Megaco/H.248 protocol over the IP network.

References

[1] S. Wu, M. Riyadh, and R. Mannan, and Lj. Trajković, "OPNET implementation of the Megaco/H.248 protocol," OPNETWORK 2002, Washington, DC, Aug. 2002.

[2] T. Taylor, "Megaco/H.248: a new standard for media gateway control," *IEEE Communications Magazine*, pp. 124-132, October 2000.

[3] "Media Gateway Control (Megaco)," Alcatel Executive Briefing, Alcatel Internetworking, December 2001.

[4] N. Greene, M. Ramalho, and B. Rosen, "Media Gateway Control Protocol architecture and requirements," RFC 2805, April 1999: http://www.ietf.org/rfc/rfc2805.txt (accessed in February 2003).

[5] F. Cuervo, N. Greene, A. Rayhan, C. Huitema, B. Rosen, and J. Segers, "Megaco protocol version 1.0," RFC 3015, November 2000: http://www.ietf.org/rfc/rfc3015.txt (accessed in February 2003).

[6] P. Blatherwick, R. Bell, and P. Holland, "Megaco IP phone media gateway application profile," RFC 3054, January 2001: http://www.ietf.org/rfc/rfc3054.txt (accessed in February 2003).

[7] M. Brahmanapally, P. Viswanadham, and K. Gundamaraj, "Megaco/H.248 call flow examples," October 2002: http://www.ietf.org/internet-drafts/draft-ietf-megaco-callflows-01.txt (accessed in February 2003).

[8] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, "RTP: a transport protocol for real-time applications," RFC 1889, January 1996: http://www.ietf.org/rfc/rfc1889.txt (accessed in August 2002).