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ABSTRACT 

Collection of user statistics and network traffic is 
crucial for understanding user behavior and for 
creating network workload models. It is also 
valuable for the management of commercial 
wireless networks. In this paper, we report on the 
analysis of billing records collected from the 
Telus Mobility Cellular Digital Packet Data 
(CDPD) network. The longest continuous billing 
record that we examined covered approximately 
twenty one days, spanning the Christmas and 
New Year holiday seasons. We used various 
tools to graphically illustrate the billing data. We 
observed that network activities exhibit daily and 
weekly cycles. Furthermore, the clustering 
analysis revealed four distinct behavioral classes 
of users. Analysis of billing data provided useful 
information about the usage of an operational 
wireless network.  

Keywords 
Wireless networks, CDPD networks, mobile 
networks, billing data, clustering analysis, traffic 
analysis. 

1. INTRODUCTION  
A number of recent research reports have been 
devoted to collection and analysis of traces from 
operational wireless networks. Analysis of these 
traces provided useful information about the 
behavior of network users. Collected traces also 
enabled traffic-based performance evaluations of 
wireless networks.  
                                                             
  *

 This research was funded by the Grant-in-Aid from 
Telus Mobility and the BC Advanced Systems Institute 
Fellowship. 

In this paper, we present an analysis of a billing 
record obtained from Telus Mobility CDPD 
network. The record lasts approximately twenty 
one days (from December 22, 2000 to January 
11, 2001). Our objective was to identify patterns 
of user behavior and network activities.   

In order to protect users’ privacy, the mobile 
Network Entity Identifiers (NEIs) (also called 
User IDs) have been sanitized (scrambled). 
Billing data consist of three types of events: 
registration, deregistration, and IP data [2]. 
Registration events occur when a user (an IP-
enabled device) attempts to identify itself to the 
network in order to gain access to network 
services. Deregistration events occur when a user 
leaves a cell. These deregistration events are 
optional. Data events describe the actual network 
traffic generated by users.  

We performed data extraction in a variety of 
ways. Javatm [6] programs were used to parse the 
billing records and to write billing data as a 
series of Structured Query Language (SQL) 
statements that load the billing data into a 
MySQL database [8]. 

The main difficulty in analyzing billing records 
has been dealing with its sheer volume. Hence, 
we used data mining and a machine learning 
technique called clustering. Clustering is used for 
discovering hidden patterns and trends in a given 
data set. It groups data into categories with 
similar behavior. In our analysis, we used k-
means clustering algorithm from the S-PLUS 
statistical package [12].  

We describe the aggregate network traffic, user 
behavior, and cell activities. Our analysis may 



provide useful information about the access to 
the CDPD network even if the billing record may 
be short and not representative because of 
holiday seasons. We were also able to provide a 
classification of network users and its cells. 
These results, although preliminary, may help in 
modeling network traffic and in creating 
workload models for commercial wireless 
networks. 

The remainder of this paper is organized as 
follows. In Section 2, we present an overview of 
CDPD protocol and the CDPD billing data. We 
present data analysis in Section 3. It includes 
aggregate network characteristics, a detailed 
analysis of user behavior, and additional results 
based on the analysis of cell activities.   Related 
work is described in Section 4. We conclude with 
Section 5.   

2. BACKGROUND 
In this section we present a brief description of 
CDPD protocol and the CDPD billing data.  

2.1 CDPD protocol 
CDPD [1, 11] is a standard protocol developed 
for commercial public mobile data 
communication networks. The CDPD 
communication architecture is based on the Open 
Systems Interconnection (OSI) Reference Model 
[15].  It deals only with the lower three OSI 
layers. CDPD network’s function is to enable 
data transmission between Mobile End Systems 
(M-ESs) and Fixed End Systems (F-ESs). The 
topology of a simple CDPD network is shown in 
Figure 1 [7]. M-ESs are connected to the 
backbone network through the Mobile Data Base 
Station (MDBS), the Mobile Data Intermediate 
System (MD-IS) (also called a mobile router), 
and an Intermediate system. The network also 
includes several Fixed End Systems (F-ESs) 
connected to the wired backbone network. 

CDPD is a multiple access protocol. Stations 
that want to transmit data must compete for 
access in the shared communications medium. 
CDPD shares some characteristics with multiple 
access protocols, such as Ethernet (IEEE 802.3), 
while still having significant differences. CDPD 
differs from other multiple access protocols 

mainly in two aspects: the wireless transmission 
medium and the mechanism for collision 
detection. 

Mobile Data Base Station (MDBS) 
communicates with M-ESs over the airlink 
interface, providing data link layer and physical 
layer functions to paired radio channels (forward 
and reverse) within its cell. Forward channel is 
contentionless, and, therefore, always available 
for the MDBS to broadcast data to M-ESs. 
Multiple M-ESs have to compete with each other 
to access the reverse channel for data 
transmission to the MDBS. 

Although the CDPD network supports multiple 
protocols at the network layer, all CDPD 
network support services are based on 
International Standards Organization (ISO)/OSI 
protocol suites. The two categories of CDPD 
support services are CDPD network support and 
CDPD network application support services. We 
are in particular interested in CDPD network 
application support services, which include 
network management, message handling, and 
accounting [2].  

2.1.1 Network management services 
The CDPD network provides comprehensive 
mobile data communication services to 
subscribers. To ensure high-level network 
availability, the CDPD network is designed to 
incorporate network management services that 
allow CDPD service provider to operate the 
network. The network management services 
provide timely information to the network 
operator to detect network faults, to exercise 
controls, to correct faults, and to configure the 
network for optimal operation.  

2.1.2 Message handling services 
Message handling services provide a generic 
message, store, and forward services that are 
useful to other CDPD network support services.  

2.1.3 Accounting services 
Accounting services provide information on how 
and by whom the CDPD network resources are 
used. The CDPD accounting services collect 
network usage data for every subscriber to 
enable compilation for billing purposes. The 
collected data may include packet count, packet 



size, source and destination addresses, cell ID 
used by M-ESs, and an approximate time of 
transmission.  

 

 
 

Figure 1. Topology of a CDPD network.  
 

2.2 Description of the CDPD billing data 
Analysis of network records often focuses on the 
overall network behavior (network elements, 
network events, and network activity 
characterization) and on traffic characteristics 
from a user point of view (when, for how long, 
and in which manner customers use the network). 
Records could be session data, transport layer 
data, application layer data, and movement data 
[3, 4, 5, 13, 14]. 

The billing records from a CDPD network that 
we analyzed summarize the network activity. 
They are used by the service provider to bill its 
customers for network usage. The structure of 
the billing record is a set of directories and files. 
Each directory is named after a sequence number 
(e.g., 528/, 529/) and contains up to 100 data 
files also named sequentially (e.g., 00074-52800, 
00074-52801, 00074-52802). Each file contains 
a record of approximately fifteen minutes of 
network activities. A file consists of a header that 
contains timestamp and sequencing information, 
and a series of TMS rows. The smallest number 
of recorded TMS rows in a file is 300 and the 
largest is 2,694. Each row represents a single 
event of either registration, deregistration, or IP 
data type. TMS rows include registration and 
deregistration event timestamps, the number of 
packets and octets transferred, as well as the 
number of discarded packets. The billing records 
we analyzed consisted of 1,888 files. 

The billing record starts at 11:30 AM on 
December 22, 2000 and lasts until 6:30 AM on 

January 11, 2001 (duration of twenty one days). 
There is a discontinuity in the billing record on 
January 2, 2001 from 7:30 PM until 10:30 PM, 
and the directory 536/ contains only 88 files.  

3. DATA ANALYSIS 
The purpose of our analysis is to characterize the 
CDPD network and the behavior of its users. 
This characterization deals with network 
elements, network characteristics over time, user 
behavior, and cell activities.  

3.1 Aggregate network characteristics 

3.1.1 Network elements 
A total of 60 unique cell IDs were located in the 
billing record. There were 2,096 unique users 
(user IDs).  Of these 2,096 users, only 1,730 
actually generated IP data events. We note that it 
is not known whether the billing record actually 
covers the entire CDPD network, nor whether all 
network elements were active during the 
collection period. Hence, above numbers may 
represent minimum values. 

Table 1 shows the breakdown by event type in 
the billing record. The number of deregistration 
events is an order of magnitude smaller than 
either the numbers of registration or IP data 
events. This is most likely because deregistration 
events are optional and because registration 
events may fail. Most users who generated large 
number of registration events failed to access the 
network and never succeeded in making a 
connection.  

 

Table 1. Breakdown of events by type. 
Event type Number of events Percentage of  

total events 

Registration 619,268 39.19 

IP data  889,227 56.27 

Deregistration 71,741 4.54 

Total 1,580,236 100.00 

 
Table 2 shows the registration statistics and the 
possible reasons for rejected registrations. We 
notice a large proportion of suspicious users who 
may be trying to fraudulently use the network.  



 

Table 2. Distribution of registrations. 
Number of registrations 

Rejected Total Accepted 

Suspicious 
users 

No 
credentials  

No 
reasons 

619,268 
(100%) 

166,525 
(26.8%) 

152,200 
(24.5%) 

152,772 
(24.6%) 

147,771 
(23.8%) 

 

Another aspect of network behavior of interest is 
the percentage of aggregate discarded packets 
(Table 3). This percentage is fairly low, and it 
would be even lower if the control packets were 
included in the calculation. 

 
Table 3. Discarded packets. 

Data packets Discarded  Percentage 

21,046,695 237,712 1.13% 

 

3.1.2 Number of network users over time 
The first aspect of the network’s dynamic 
behavior that we investigated was the number of 
network users over time. Figures 2 and 3 show 
the time series. In Figure 2 (and in all subsequent 
figures) the discontinuity in the billing record is 
represented by zero number of users and it is 
marked (a gray star).  
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Figure 2. Number of network users over time 
(December 22, 2000 to January 11, 2001). 
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Figure 3. Daily cycle of network users 
(January 8, 2000: 12 AM to January 10, 2001: 

12 AM). 

 
Two cycles may be observed in Figure 2. The 
first is a daily cycle between peaks and valleys 
within a day. In general, the peaks occur around 
5:00 PM and the valleys around 5:30 AM 
(Figure 3). The second cycle (weekly) is slightly 
irregular, but clearly visible: there are two ranges 
of visible peaks. The higher peaks tend to fall on 
weekdays and the smaller ones on weekends and 
holidays.  We observed numerous low peaks in 
the first half of the collection period. Those 
additional low peaks occur between December 23 
and December 26, and again between December 
29 and January 1. The next pair of low peaks 
appears between January 6 and 7, which is the 
first “regular workweek” weekend of the year. It 
is possible that these irregularities are due to 
holiday seasons. Unfortunately, the billing 
records were not long enough to enable us to 
predict the usage pattern. Nevertheless, this 
reduced activity on weekends matches the 
behavior reported in past studies  [3, 4, 5, 13, 
14].  

3.1.3 Growth of users over time 
Figure 4 shows daily and cumulative number of 
network users during the collection period 
(twenty one days). The average number of unique 
users in the network is approximately 272 per 
day, with standard deviation 91.2. The number of 
the daily network users grew approximately by 7. 
We notice a decrease of the growth in number of 
users on weekends and on holidays. This is 
illustrated in Figure 4 with data plots falling 
under the regression lines. 
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Figure 4. Cumulative and daily growth of 
users (December 22, 2000 to January 11, 

2001). Dashed lines represent regression lines. 

 

3.1.4 Data traffic over time 
An alternative way of measuring the network 
utilization is to observe the number of data 
packets, data octets, and discarded packets over 
time. Figure 5 shows the number of data packets 
over time. The network seems to have more 
activity (peaks) throughout certain days. Note the 
increased activity at the beginning of the trace. 
Again, the number of data packets over time 
exhibits the same periodicities (daily and weekly) 
as the number of network users over time. The 
first cycle, shown in Figure 6 (depicting two 
days), is a cycling between peaks and valleys.  
Generally, the peaks occur around 5:00 PM and 
the valleys occur around 6:00 AM.  

 

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

12/22/00 12/27/00 01/01/01 01/06/01 01/11/01

D
at

a 
pa

ck
et

s

Figure 5. Number of data packets over time 
(December 22, 2000 to January 11, 2001). 
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Figure 6. Daily cycle of data packets (January 
8, 2000: 12 AM to January 10, 2001: 12 AM). 

 

When data octets (as opposed to packets) are 
plotted over time (Figure 7), the increased 
activity at the beginning of the trace is absent. 
However, the two cycles appear again. When 
discarded packets are plotted over time (Figure 
8), the two cycles that appear in Figures 5 and 7, 
disappear. Nevertheless, closer examination of 
the number of discarded packets over time shows 
that cycles are present and most peaks occur 
around 12:00 AM (Figure 9).  
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Figure 7. Number of data octets over time 
(December 22, 2000 to January 11, 2001). 
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Figure 8. Number of discarded packets over 
time (December 22, 2000 to January 11, 

2001). 
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Figure 9. Daily cycle of discarded packets 
(December 24, 2000: 12 PM to December 26, 

2000: 12 PM). 

 

3.1.5 Snapshot of network characteristics over 
time 
Figure 10 illustrates the summary of network 
characteristics over time: number of unique 
users, data packets, data octets, control packets, 
control octets, and discarded packets. Figure 10 
is a symmetric matrix of graphs. Their x and y 
variables are shown on the diagonal. It describes 
the inter-relationships between these variables. 
For example, the first graph in the first column 
shows the number of unique users vs. time. The 
first graph in the first row is its rotated mirror 
image. Among other observations, we notice the 
cyclic pattern of the number of users, data 
packets, and data octets over time. The 
proportionality between the number of control 
packets and control octets is also clearly 
observable. 
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Figure 10. Matrix of graphs summarizing network characteristics over time (number of network 
users, data packets, data octets, control packets, control octets, and discarded packets) and their 

inter-relationships. 
 

3.2 User behavior 

3.2.1 Events per user 
In this section, we consider the events in the 

billing record by user ID (mobile NEI). Figure 
11 shows the number of total events per user. In 
Figure 11, (and in all subsequent figures) the 
user IDs are not shown due to lack of space. It 



can be seen that a few users (approximately ten) 
account for the majority of events. Figures 12, 
13, and 14 show the breakdown of events per 
user by event type. Only a small number of users 
account for the majority of registration (Figure 
12), deregistration (Figure 13), or IP data events 
(Figure 14). The disproportionate number of 
total events is due to the large number of 
registration events for a few users. There are 
users whose registrations are always accepted. 
Nevertheless, there are also 366 users who have 
registered with the network never gaining access 
to the system. 

Several cases of unusual user behavior are 
shown in Table 4.  These users account for 
60.75% of all the registration events. User 
61.131.154.9 alone accounts for 6.06% of the 
total number of events in the entire record. It 
might be that some users are trying to 
fraudulently gain access to the network because 
their user IDs differ from the IDs of authorized 
users. User IDs of subscribed users commence 
with 37, 59, or 91. For example, user 
59.206.117.22 with the most deregistration 
events (Figure 13) has only one less registration 
event than the number of deregistration events 
(2,136 vs. 2,137) with all registrations accepted. 
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Figure 11. Number of total events (sum of 
registration, deregistration, and IP data 

events) per user. 
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user. Approximately ten users account for the 

majority of events. 

 

0

500

1000

1500

2000

2500

User IDs

D
er

eg
is

tr
at

io
n 

ev
en

ts

Figure 13. Number of deregistration events 
per user. The user 59.206.117.22 has the most 

deregistration events (2,137). 

 
IP data events are shown in Figure 14. While 
there are still a few users that appear as outliers 
in the number of IP data events that they 
generate, events are far more evenly distributed. 
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Figure 14. Number of IP data events per user. 
Data events are far more evenly distributed. 



Table 4. Users with unusual behavior. 
 

User IDs 

Regis. 
events 

Deregis. 
events 

Regis. 
accepted 

Regis. 
accepted  

 % 

59.206.117.22 2,136 2,137 2,136 100.00 

102.133.238.133 2,190 0 0 0.00 

91.171.227.151 2,611 0 0 0.00 

59.207.111.139 2,895 0 0 0.00 

59.207.215.20 4,623 56 56 1.21 

59.206.117.28 5,024 7 380 7.56 

59.207.215.117 4,899 1 8 0.16 

59.207.206.47 5,225 0 0 0.00 

59.207.211.210 6,720 9 9 0.13 

59.206.118.178 12,328 0 0 0.00 

247.33.244.20 26,421 0 0 0.00 

59.206.118.180 26,901 0 0 0.00 

59.206.127.247 27,019 37 37 0.14 

59.207.211.23 29,373 50 74 0.25 

59.206.118.147 30,299 0 0 0.00 

59.207.206.36 31,042 0 0 0.00 

91.171.159.54 60,598 101 102 0.17 

61.131.154.9 95,838 0 0 0.00 

 

3.2.2 Data traffic per user 
Data packets, octets, and discarded packets were 
plotted over time in Figures 5, 7, and 8. Figure 
15 shows the number of discarded packets per 
user. The motivation is to locate users whose 
packets were unfairly discarded. Specific 
examples of inequity in terms of discarded 
packets are shown in Table 5. We notice that 
some users have over 10% of discarded packets, 
while other users have very low packet loss. 
These listed users represent the extremes in terms 
of packet loss. Note that user 59.207.209.71 
sends almost five times more packets (with no 
loss) than user 59.206.125.155 (with more than 
30% loss). Further examination of these two 
users’ personal records may explain this 
discrepancy.  
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Figure 15. Number of discarded packets per 
user. Discarded packets are unfairly 

distributed among users. 

 
Table 5. Inequity of discarded packets 

per user. 
User IDs 

 
Data  
packets 

Control 
packets 

Disc. 
packets 

% Disc. 
packets  

Users with high data and low percentage of loss 

59.207.209.71 285,223 98 0 0.00 

59.206.125.156 395,176 4,039 3,806 0.96 

59.206.120.20 447,523 5,237 9,474 2.12 

59.207.209.151 1,926,522 194 308 0.02 

59.207.209.164 1,984,159 42 660 0.03 

Users with low data and high percentage of loss 
59.206.120.6 100,553 1,696 11,358 11.30 

59.206.125.71 4,238 204 504 11.89 

59.206.125.213 115,911 1244 18,282 15.77 

59.206.125.208 8,244 251 2,158 26.18 

59.206.125.245 74,767 2,181 30,966 41.42 

59.206.125.155 60,342 2,586 29,871 49.50 

3.2.3 Mobility of users 
Figure 16 shows the number of unique cells 
visited by each user. It shows that most users 
move around (at least a bit). The average number 
of cells visited is 9.41, with standard deviation 
9.05, minimum 1, and maximum 47. Figure 17 
shows the number of network users grouped by 
the number of visited cells. From the 2,096 
recorded users, 78.58 % move between multiple 
cells. There were 449 stationary users (21.42%). 
This observation regarding the mobility of users 
matches the behavior found in similar studies of 
wireless network access by Tang and Baker [9] 
who found that 58% of the wireless users moved 



between multiple locations during the data 
collection. Hutchins and Zegura [5] also 
observed 64% wireless users who moved 
between multiple access points. 
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Figure 16. Number of cells visited by users. 
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Figure 17. Number of network users grouped 
by their range of mobility. 

3.2.4 Clustering of users 
We used k-means clustering algorithm to find 
possible classification of users. K-means is an 
iterative algorithm, where the number of clusters 
k is supplied in advance [4, 9, 14]. We used eight 
variables when clustering network users: number 
of cell visited, data packets, control packets, 
discarded packets, IP data events, deregistration 
events, registration events, and total events. The 
total population is 2,096 users. Figure 18 shows 
a matrix of graphs that represents these variables 
and their inter-relationships. The best clustering 
results (Table 6) are those providing four distinct 
classes of users: class 1 (96.7% of users) 
consists of customers with relatively low network 
usage, class 2 (2.6% of users) consists of 
customers having medium network usage, class 3 
(0.5% of users) consists of customers having 
relatively high network usage, and class 4 (only 
users 59.207.209.164 and 59.207.209.151) 
consists customers having exceptional behavior. 

We also experimented with other clustering tools 
available in S-PLUS. K-means algorithm proved 
to be more efficient and produced results that 
best matched graphical analysis of the CDPD 
data. 
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 Figure 18. Matrix of graphs showing the variables used in the clustering analysis of users. 
Data plots may give an insight for the possible number of classes to be used in k-means 

clustering algorithm. One class counting for only two users is easily observable. 

 



Table 6.  K-means clustering results for the classification of users (center values). 
Cluster 

ID 
Unique 
users 

Cells 
visited 

Data 
packets 

Control 
packets 

Disc. 
packets 

IP Data 
events 

Deregis. 
events 

Regis. 
events 

Total 
events 

Network 
usage 

1 2,028 9.3 4,541.0 116.2 23.7 356.6 32.7 300.1 689.6 Low 

2 55 11.4 90,768.0 391.3 2,734.7 1,775.3 72.7 153.7 2,001.8 Medium 

3 11 10.7 267,608.0 19,138.0 3,469.4 5,678.7 101.0 167.4 5,947.2 High 

4 2 9.0 1,955,340.5 118.0 484.0 3,226.0 143.5 379.0 3,748.5 Very high 

 
3.3 Cell activities 

3.3.1 Events per cell 
There are 60 unique cell IDs that appear in the 
billing record. In all subsequent figures, we show 
only 30 cell IDs due to lack of space. Figure 19 
shows the total number of events per cell (cell 
IDs are ordered by their identification numbers). 
Figure 20 shows the breakdown by event type. A 
few cells are significantly busier than others. A 
geographical network diagram may have 
provided the reason for this behavior. The lack of 
correlation between different types of events is 
fairly visible.  

In general, most events occurring in most cells 
are IP data and registration events. This indicates 
less than 50% overhead (in terms of events, not 
the actual bits). 
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Figure 19. Total number of events (sum of 
registration, deregistration, and IP data 

events) per cell. 
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Figure 20. Breakdown of events by type: 
registration, deregistration, and IP data events 

per cell. 
 

3.3.2 Cell user density 
Figure 21 shows the number of network users per 
cell. The distribution of users among cells varies. 
The average number of users in a cell is 329.05, 
with standard deviation 183.03, minimum 28, 
and maximum 860. 
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Figure 21. Number of network users per cell. 
 

3.3.3 Clustering of cells 
We employed k-means clustering algorithm to 
classify cell activities using five variables:  
number of total events, IP data events, 
deregistration events, registration events, and 



network users. Figure 22 shows these variables. 
The best clustering results (Table 7) produced 

three distinct classes consisting of 37 (62%), 15 
(25%), and 8 (13%) cells. 
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Figure 22. Matrix of graphs showing the variables used in cell clustering analysis. 

 

Table 7.  K-means clustering results for the classification of cells (center values). 
Cluster 

ID 

Number 
of cells 

Network 
users 

Total 
events 

IP Data 
events 

Deregis. 
events 

Regis. 
events 

Cell 
activities  

1 37 238.67 10,115.57 6,624.486 596.567 2,894.514 Low 

2 15 448.00 36,276.73 22,877.867 1,589.20 11,809.667 Medium  

3 8 524.00 82,726.13 37,619.125 3,228.75 41,878.25 High 

 

4. RELATED WORK 
Most closely related to our work are studies of 
access wireless networks and user behavior. 
Hutchins and Zegura [5] described an analysis of 
data collected from a campus area network 
providing wireless 802.11b access capabilities. 
They presented an analysis of 138 days of 
session data, 54 days of transport layer flow 
data, and movement data taken from 109 
wireless access points spread across 18 
buildings. They observed linear growth in 
number of users and noticed daily behavioral 

cycles, with a peak usage time in early evening 
and minimum usage in early morning. Hutchings 
et al., [3, 4] also analyzed data sets of several 
months of RADIUS authentication data [10] 
taken from a large national dial-up Internet 
Service Provider. They noticed differences in 
number of network users on weekends and 
weekdays. Our findings in a CDPD network 
show similar trends.  

Tang and Baker [14] described an analysis of a 
12-week study of the local-area wireless network 
located at Stanford University. Their study 



consisted of 74 users utilizing 13 wireless access 
points (within the single campus building) to 
campus and Internet resources. They found that 
more users are active on fewer days, while fewer 
users are active on many days. Tang and Baker 
[13] also presented an analysis of seven weeks of 
data from a metropolitan-area wireless network, 
Metricom’s Ricochet Network service. Among 
other findings, they reported that more than half 
of the users in the study move between multiple 
locations during the data collection. Our 
observations are comparable.  

5. CONCLUSIONS 
Analysis of the CDPD billing records yielded 
some interesting data, despite the fact that the 
billing records contain only a high-level 
description of the network usage. Our analysis 
shows that CDPD network users have cyclic 
behavior. Two cycles of periodicity are 
observable. The first is a daily period between 
peaks and valleys. In general, the peaks occur 
around 5:00 PM and the valleys around 5:30 
AM. The second cycle is a weekly cycle between 
two ranges of peaks: the higher peaks appear on 
weekdays and the smaller on weekends and 
holidays. A small subset of users accounts for a 
large number of rejected registration events, 
packet loss, and control packets. High number of 
rejected registrations may originate from users 
who attempt to use the network fraudulently. 
Clustering analysis with k-means algorithm 
revealed that it was possible to classify network 
users and cell activities. Analysis of longer 
billing records and using more powerful 
visualization and clustering tools may provide 
additional insights. 

Although the billing record we examined may not 
be representative, our analysis provided useful 
information about the access to an operational 
wireless network. It may also be useful for 
modeling network traffic and for creating 
workload models for commercial wireless 
networks access. This type of analysis may also 
prove useful for better management of wireless 
networks.  
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