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ABSTRACT

Traditionally, Markov models have not been successfully used for
compression of signal data other than binary image data. Due to
the fact that exact substring matches in non-binary signal data are
rare, using full resolution conditioning information generally tends
to make Markov models learn slowly, yielding poor compression.
However, as is shown in this paper, such models can be success-
fully applied to non-binary signal data compression by continually
adjusting the resolution and order to minimize the codelength of
the past samples in the hope that this choice will best compress the
future samples as well, a technique inspired by Rissanen’s Min-
imum Description Length (MDL) principle. Performance of this
method meets or exceeds current approaches.

1. INTRODUCTION

It is commonly felt [1] that Markov models are inappropriate
for compression for all but binary signal data. This opinion
is based on the fact we are looking for exact matches in the
data when we do Markov modelling. However, measure-
ments of physical processes (such as images) are generally
noisy representations of processes that have infinite resolu-
tion. For example, consider the case where binary data is
corrupted by white Gaussian noise and then digitized to 256
levels of grey. Although there are only two levels in the gen-
erating mechanism, the effect of the noise will be to create
many additional contexts. Each histogram in each context
will thus see correspondingly fewer samples and will take
longer to generate accurate probability estimates.

Existing variable order techniques designed for text com-
pression [2] counteract the learning problem for Markov
models to some extent, but still do not give us sufficient
control over the number of states in the model. We will
show that we need to vary both the order and the resolution
of the conditioning information as we compress signal data.
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This paper begins by determining the optimal resolu-
tion/order of a set of test sources consisting of a synthetic
sources as well as six common 8-bit grayscale images con-
verted to a one-dimensional sequences via raster scans:
pentagon (512�512),lena (256�256),photographer
(256�256),barb (512�512),mandrill (512�512), and a
(512�512)texture pattern. We then present some novel
methods for choosing the optimal resolution/order combi-
nation without an exhaustive search or even a pre-scan of
the data.

As a final introductory note, the algorithms described
in this paper are adaptive. Adaptive Markov models, most
often used in conjunction with arithmetic coding [3], start
with no information about the source, accept data sequen-
tially, are presented with each symbol in the sample only
once, and modify the way they compress in response to the
history. Adaptive algorithms are attractive in that it is un-
necessary to perform a pre-scan of the data, and no side
information need be sent.

2. PRELIMINARIES

Before proceeding, we need to introduce the termsstate
weight, which is simply the number of contexts in a Markov
modeller andpermutation, which is an ordered set of inte-
gers [3],p = fp1; p2; � � � ; png, wheren is the model order.
The source to be coded is given byxt = x1; x2; � � � ; xt,
wherexi is theith symbol, and we define the ordern con-
text of x at symbolt using permutationp as the sequence
xt�p1; xt�p2; � � � ; xt�pn. For the context to be causal, each
element ofp must be greater than zero.

Now, let us define theresolution modification as an
ordered set of integers in[0; r], m = fm1;m2; � � � ;mng,
wherer is the source resolution in bits. This modification
is applied to the previously defined context resulting in the
resolution reduced context

(xt�p12
m1�r ; xt�p22

m2�r; � � � ; xt�pn2mn�r) . (1)



Note that in performing the resolutionreduction, we truncate
the fractional part of the individual products. An ordern

modeller will be denoted by

(r1 = r �m1; r2 = r �m2; � � � ; rn = r �mn) , (2)

that is, by the resolution in bits of the conditioning informa-
tion. Choosing a specific value ofn and a specific sequence

m results inN = 2
P

n

i=1
(r�mi) possible contexts for the

current symbol. The state weight is thusN .

3. FIXED ORDER/FIXED RESOLUTION
MODELLING

Consider adaptively modelling a sample generated by an
unknown stationary source that generates symbols according
to some distribution. The appearance of each symbol in the
sequence is then used to increment the appropriate histogram
count for the current context. These counts are then used
to produces estimates of the probability distributions, which
are then passed on to an arithmetic coder. In this work,
we use the non-linear estimation technique described by
Williams [1].

Since they get “hits” more often,we expect that the lower
order joint probabilities will be more accurate than the higher
order ones; however, exactly whatn should be used to code
the input aftert samples depends on the distribution. Solv-
ing this problem is what motivated the development of the
currently existing variable order techniques. For instance,
the “Universal Markov Coding” (UMC) algorithm [2] tends
to use low order modellers at the beginning of a sample
and work up to higher order modellers as more samples are
seen. This works better than just using a high order modeller
because they yield uniform predictions (which are bad un-
less the underlying distributions are uniform) until enough
symbols have been processed.

Based on the success of the other simplifying methods
like splitting the input into bit planes [4] or running variable
order models, we expect that varying the resolution of the
conditioning information in a Markov model will improve
the performance. To test this conjecture, 216 samples were
generated using an AR(2) model driven by white Gaussian
noise with�2

N = 64. The samples were then quantized
to r = 8 bits of resolution and translated to fall in the
range[0; 255]. The parameters for the AR(2) model,� =
f0:01; 0:89g, were chosen to demonstrate some properties
of the modellers described later. An exhaustive set of order 2
modellers spanning all resolutions for the order 1 and order 2
conditioning information were then run on the source.

The procedure used will now be described. For each
samplext and for each model, the per-symbol codelength
(the negative logarithm of the probability assigned to the
symbol by the model) was saved. Then, after the entire
samplex had been coded by each model, the performance of
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Figure 1: FOFR Performance on the AR(2) Source

all models was compared based on the sum of the per-symbol
codelengths for each model. The modeller with the lowest
overall codelength was called theoptimal static choice. If
more than one modeller performed equally well, the one
with the lower state weight was chosen. The performance
of the modellers is shown in Figure 1.

The best performance attained by a single modeller on
this source was with the(0; 5) modeller at 5.19 bits/pixel.
That is, the best order 2 modeller for this sample ignored the
order 1 conditioning information altogether, and used 5 bits
for the order 2 conditioning information. Referring to the
correlation sequence of this test source, this choice makes
sense in that the sample immediately prior to the current
sample is not strongly correlated to the current sample. This
optimal static choice represents a savings of 21.6% over
the (0; 0) model, 6.4% over the(0; 8) model, 25.6% over
the (8; 0) model, and 40.6% over the(8; 8) model. These
models were chosen as comparison because they represent
models that one might naively choose if one did not know
about the effect of using reduced-resolution conditioning
information.

The optimal static order 2 resolution modification was
determined for each image in the image test set. The average
maximum and minimum improvements over the test set
when compared to the(0; 0), (0; 8), and(8; 0) models were
24% and 6.2% respectively.

4. VARIABLE RESOLUTION MODELLING

Based on the above results, a system could determine the
optimal resolution via a pre-scan through the data, and trans-
mit n andm as side-information. But is this fixed resolution
modeller the best we can do? Additionally, due to the fact
that the data may be non-stationary and the optimal resolu-
tion choice may not be constant, is it possible to avoid the
pre-scan?



Our experiments have shown that lower resolution mod-
ellers typically perform best in the very early portion of the
sample; however, as more data is seen, the higher resolution
modellers overtake them. Hence, we would like to initially
use low state weight modellers and then move to higher state
weight modellers as more data is seen, choosing the resolu-
tion in such a way as to optimally exploit the correlation in
the sample. One way of doing this is to run many modellers
in competition and to choose between them based on their
recent performance metric as in Williams’ [1] multimodal
data compression (MMDC) algorithm. Specifically, each
model maintains a recent performance measure

Hi;t = �

tX

j=1

�t�j logpi(xj) (3)

wherepi(xt) is the probability assigned to samplext by
modeli and� corresponds to the half-life of the performance
information. The half-life and the parameter� are related
via the equivalent expressions

� = elog 1
2=h $ h =

log 1
2

log�
. (4)

The half-life means that the effect of the performance of
modeli at timet � h, on the total performance measure at
time t, is one half the effect of the performance of modeli

at timet.
In the VR approach, the family of models is simply one

that contains all possible resolutions for a given value ofn

(which automatically selects different orders from zero to
n, since resolutions can be zero). However, one problem
with this approach is that some subset of these modellers
may never be chosen at all, and yet (a lot of) resources
will be consumed updating them. We thus adopt a different
approach that grows models as needed.

We begin modelling our signal source using only the or-
der 0 model. Since it is our conjecture that the state weight of
the optimal model choice increases monotonically with the
number of samples seen, a good guess for the next optimal
modeller is the one that has an incrementally higher state
weight than the current modeller. However, having chosen
the arbitrary maximum ordern, there are in factn such mod-
ellers, namely(1; 0; � � � ; 0); (0; 1; � � �; 0); � � � ; (0; 0; � � �; 1),
each of which has a state weight of 2. To be thorough, the
algorithm should create thesen higher state weight mod-
ellers and run the order 0 modeller in competition with them
to determine when to change to a modeller with a higher
state weight. Assuming that there exists some redundancy
in the signal to be exploited, one of then modellers, will
be chosen, most likely the one that uses the conditioning
information at the offset with the highest correlation with
the current symbol being coded. Once the algorithm selects

this modeller, it should again create and run in competi-
tion those modellers that have an incrementally higher state
weight compared to the selected modeller.

From that starting point let us define the VR algorithm
as follows:

1. read next sample and code it with thebest modeller
(initially the order 0 one)

2. update the performance metric for all existing mod-
ellers

3. generate list of modellers performing the best by com-
paring the performance metrics of all existing mod-
ellers

4. choose the one modeller from list with lowest state
weight and designate it thebest modeller

5. for all modellers on the list, grow “child” modellers
with incrementally higher state weight

6. if there are more samples go to step 1 else quit

A modeller is allowed to grow if it is found to be the one that
performs the best at the current instantt. If there are several
that are performing identically, all are allowed to grow.

Model growth is defined as creation of then mod-
ellers with incrementally higher state weight than the parent
model. Thus then children of modeler(3; 2; 5) would be
(4; 2; 5), (3; 3; 5), and(3; 2; 6). Of course, the maximum
resolution of the modellers is limited to the source resolu-
tion. According to this definition, a node could have been
created from several different parents. All of these newly
created modellers have the same state weight, but could
be anything from order 1 to ordern (in the conventional
understanding of the term) because the components with
resolution zero are skipped.

The least frequently used model is destroyed if the max-
imum number of models is exceeded while a growth is oc-
curring, or when the algorithm has exceeded the allowed
memory consumption. This has implications on the coding
of non-stationary data, since the model growth is always in
the direction of increasing state-weight. A possible modifi-
cation to the VR algorithm would be to note the derivative
of the per-symbol codelength and to use this information to
allow the state-weight to shrink. This is a topic for further
research.

Note that the model growth rules described above are in
fact implementing a form of permutation functiondefinition,
since those members of the function that do not help as much
as others will have fewer bits of resolution allocated to them
by the algorithm.

The algorithms presented above differ in a significant
way from PPMI [5]. Only the models that are performing
well “grow” and only to the extent in resolution and order
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Figure 2: Performance on the Test-Set

that is necessary. Instead of using an arbitrary criterion for
how many samples is enough to constitute a reliable set for
a given order and resolution, the algorithm uses the recent
codelength to decide between models of varying resolution,
a technique that is an application of the minimum description
length (MDL) principle.

4.1. Experiments

The performance of the VR modeller on the image test-
set is shown in Figure 2. The the half lifeh was set to
128 samples, the maximum number of models to 128, the
maximum memory usage to 16 MB, and the maximum order
to 2. The permutation used in these experiments considered
the pixel immediately to the left of the current pixel first,
and then the pixel immediately above, as is appropriate and
common in image coding. For comparison, the optimal
static and DPCM performance is also given. The DPCM
results are based on order 3 predictor coefficients determined
by a pre-scan of the data – the codelength of the residual, as
determined by an asymptotically adaptive order 0 model, is
given as the rate.

Despite our initial hesitation about the performance of
the algorithm on non-stationary sources, the VR algorithm
performed well overall on the test set, resulting in code-
lengths below the statically chosen optimal value for all
sources exceptlena, for which the codelength was approx-
imately 3.2% higher. The performance is also slightly better
than that obtained using DPCM. Improved performance over
DPCM is expected to be possible if the image data is kept
in its 2D form rather than being converted into a raster.

5. CONCLUSIONS

We have investigated some methods for solving the Markov
model learning problem. Instead of adjusting the number of

states in the model using just the model order, we have the
ability to vary the resolution of the conditioning informa-
tion as well. In fact, to obtain the performance obtainable
from methods like DPCM, wemust vary the resolution this
way. Due to their flexibility, we see that on signal sources
that cannot be well represented by a linear model, fixed
order/variable resolution models can outperform DPCM.
However, it appears that many natural image sources can
be well represented by linear models. The VR techniques
implement a useful form of permutation selection, effec-
tively ignoring data that does not help code the source.
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