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ABSTRACT 
Context-based adaptive entropy coding is an essential 
feature of modern image compression algorithms; however, 
the design of these coders is non-trivial due to the balance 
that must be struck between the benefits associated with 
using a large number of conditioning classes, or contexts, 
and the penalties resulting from data dilution. The problem 
is especially severe when coding small sub-images where 
the amount of data available is small. In this paper, we 
propose an iterative algorithm that begins with a large 
number of conditioning classes and then uses a clustering 
procedure to reduce this number to a desired value. This 
method is in contrast to the more usual approach of 
defining contexts in an ad-hoc manner. Experiments are 
conducted on synthetic data sources having varying 
amounts of memory, as well as on the sub-images resulting 
from a wavelet decomposition of an image. The results 
show that our approach to context selection is effective and 
that the algorithm automatically learns the structure of the 
data. This technique could be applied to improve the 
performance of both image and video coders. 

 

1. INTRODUCTION 
Adaptive arithmetic entropy coders are used in newer 
compression standards to achieve rates that are 
asymptotically close to the source entropy; however, the 
algorithm takes time to learn the source statistics and the 
performance suffers when the amount of data to code is 
small. This issue is significant, since image coders such as 
JPEG 2000 [1] partition their images into relatively small 
blocks prior to entropy coding. The problem is 
compounded by the fact that multimedia sources often 
contain significant memory (even after a decorrelating 
transform) and a conditional entropy-coding approach must 
be taken: separate arithmetic coders are used for each of the 
possible conditioning classes. The result can be a severe 
reduction in the amount of data available for learning. To 
combat this problem, a balance must be struck between the 

benefit of using many conditioning classes to lower the 
entropy and the cost associated with data dilution. 
Intelligent ways must be found to define the reduced set of 
contexts 

In an arithmetic coder, the task of the context model is to 
accurately estimate the probability mass function (pmf) of 
the upcoming symbol. This estimation is generally made by 
counting the number of occurrences of each symbol in each 
context and computing relative frequencies. The counts can 
be organized into a histogram for each context, with one 
entry per symbol. There are many possible ways to form 
contexts; however, two common techniques are to use 
finite-state machines [2] and prediction [3][5]. In the 
former case, the values of previously coded symbols 
(generally, but not always, a raster scan for image data) are 
used to index a �state� that then forms the context. The 
�raw� number of possible contexts is finite, since the 
spatial extent of the state information is limited by a 
template; however, the number can also be very large � 
especially when non-binary alphabets are used. In practice, 
the number of contexts must be substantially reduced and 
this is often done by assuming Markov data and only 
forming the context from spatially adjacent samples. Ad 
hoc �context quantization� procedures may also be used to 
reduce the number of contexts further. As an example, see 
the entropy coding method in JPEG 2000 [1]. The second 
approach, based on prediction, is to use previously coded 
symbols, to form a (usually linear) prediction of the current 
symbol, which can then be quantized to form a finite 
number of contexts. The CALIC [3] algorithm is an 
example of a lossless image compression technique that is 
based on this approach.  

In this paper, we present an algorithm based on the �finite-
state� approach that reduces the number of contexts by 
merging those whose pmf is determined to be similar 
according to a distortion measure. In [4], a related 
technique called MCEQC was used to design a �context-
quantizer� for binary random variables.  MCECQ has also 
been applied to MPEG-4 α -plane sequences. Here we 
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develop the optimal context quantizer problem for non-
binary case and use a splitting algorithm similar to the 
GLA algorithm for the design of vector quantization (VQ) 
codebooks [6]. We also give a proof for the convergence of 
the algorithm.  

2. PROPOSED ALGORITHM 
Our approach is based upon the notion of a histogram 
quantizer that takes any input histogram (or pmf) and 
matches it to a finite set of histograms from a �codebook�. 
More precisely, let ( 1 2, ,..., )KT T  be one of M 
conditional histograms for a source sequence having K 
different symbols, with T  being the conditional 
probability of symbol k.  This set of histograms is termed 
the context space and would typically be defined using the 
values of already coded symbols that are spatially close to 
the symbol being coded. An N-level histogram quantizer is 
a mapping that assigns to each input histogram, T, a 
reconstruction histogram,T q  that is drawn from a 
finite-size codebook of histograms, 

T T=

k

( )T′=
N { }, 1,...,iA R i N= =

{ }iR

, 
where the  specify K symbol histograms. The quantizer, 
q, is completely described by two elements: the 
reconstruction alphabet A and the partition, of the input 
histogram space. This partition is defined by the set 

, with . 

iR

1,i= ={ }, ...,iS S N : ( )iS T q T= =

In designing the quantizer, we require a distance measure, 
d, and choose the relative entropy between the histograms 
T and . This quantity is given by iR

  (1) ( ) ( ) (1
, || logKi i

k kk
d T R H T R T T R

=
= =∑ )/ i

k

This measure was also suggested in [4] and is sensible for 
three reasons: it is strongly related to the entropy; it is a 
measure of dissimilarity between pmf�s; and is non-
negative, being zero if and only if T . A minor 
drawback is that the measure it is not symmetric. 

iR=

Our adaptation of the GLA is formally stated below: 

1) Start with an initial reconstruction histogram 
codebook, ( )0

NA ; zero and m; select ε . ( )0D

2) Determine the N quantization regions defined by 
( ) { : ( , ) ( , ), }, 1,...,m i j
iS T d T R d T R j i i= < ∀ ≠ = N  

       and compute the average distortion, ) , between the 
input and reconstruction histograms as 
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3) Stop if ( )( 1) ( ) / mm mD D D ε− − <                                                              

4) . Determine the codebooks at iteration m, 1m m= +
( )m
NA , by computing the average histograms for each 

; this is done element by element according to ( 1)m
iS −
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Go to step #1. 

Convergence of the Histogram-Quantizer Design 

In order to guarantee the convergence of the algorithm, we 
require that  be non-negative. It is clear that 
step (1) above is a nearest neighbor calculation and that it 
can only lower the distortion; however, we need to prove 
that step (3) also reduces the distortion. Since the total 
distortion is made up of a sum of the terms, we can treat 
these individually. Expanding (2) using (1) gives 

( 1) ( )mD D− − m

iD

( ) ( )
( )

( )
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Pr Pr
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Changing  has no effect on the 1st term and we thus 
minimize  by maximizing the 2nd term. Defining  

i
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allows us to write the second term as 
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Now, inspection shows that both  and 

, which means that both W and  are valid 

pmf�s. Since the relative entropy between two pmf�s in 
non-negative, we have 

1kk
W =∑

iR1i
kk

R =∑

( )|| 0 log logi i
k k k

k k
kH W R W R W W≥ ⇒ ≤∑ ∑  

with equality when W . We thus see that λwill be 
maximized if and only if this equality is true. Since this is 
exactly what step (3) forces, the step can never result in an 
increased distortion. 

i
k R= k

Context Determination 
Our goal is to now use the histogram quantizer to design 
locally optimal contexts of a desired size, . To achieve 
this goal, we look to the GLA and adopt the �splitting� 

N
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version of the algorithm [6]. As presented below, the 
number of contexts is constrained to be a power of 2; 
however, this restriction is easily lifted with trivial 
modifications. 

1) Initialization: Let be the centroid histogram of the 
M histograms that form the context space. 
Set and define

1R

1N = { }11A R= .  
2) . To obtain double the number of contexts 

each set  split by forming two new  �centroids�:  
itself and the histogram in that is closest to .  

2N N=
Si

iR
iS iR

3) Run the histogram-quantizer algorithm to produce a 
system with N contexts 

4) If , go to step #1.   N ≠N

3. EXPERIMENTAL RESULTS 
We tested the proposed context-selection algorithm using 
two types of sources with memory. The first is a 1st-order 
Gauss-Markov source modified to have zero correlation by 
randomly flipping the sign of each sample with a 
probability 0.5 after the sequence has been generated. We 
call this a GM-F source and select it as a test case since we 
know the correct answer and it demonstrates the power of 
our approach over context design methods that are based 
upon linear prediction (which will fail here). Memory 
without correlation is common in wavelet-transformed 
images.  

In the case of the GM-F source, we let ρ  range from 0.1 to 
0.9 and generated a 10  samples sequence for each . We 
then applied a 32-level uniform quantizer whose loading 
factor is set to 4, a value chosen to balance the overload 
and granular distortion of the quantizer. The context is 
defined as the two previous samples. Forρ , the 
context space contained 774 nonzero histograms out of a 
possible 1,024.  We then started with N  and increased 
it in powers of two until no further drop in entropy was 
obtained. Since the source is 1st-order Markov, there are 32 
possible values for the previous symbol; however, the sign 
flipping operation removes any sign distinction and we 
thus expect that 16 distinct contexts should be sufficient to 
describe the source. 

7 ρ

9

lf

0.=

1=

The experimental results for the GM-F source with 
are shown in Table 1 and it is indeed seen that there 

is little point in using more than 16 contexts (8 really). We 
can get more information regarding what is happening by 
looking at the conditional histograms themselves and these 
are shown in Figure 1 for the N  case. As expected, 
the histograms are all bi-modal.  Indeed, the curves in the 

0.9ρ =

16=

Table 1: Context Merging for the GM-F Source 

N  distortion � as in (2) entropy [ bits/sym] 

1 0.5690 4.0617 
2 0.2164 3.7091 
4 0.0700 3.5628 
8 0.0170 3.5098 
16 0.0122 3.5039 

774 0 3.4927 
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 Figure 1: Converged Conditional Histograms for GM-F 

figure are essentially identical to the conditional histograms 
based only on the magnitude of the previous sample. Our 
algorithm converged in a similar manner for smaller values 
of , although the benefit to using higher-order contexts 
decreases with . 
ρ

ρ

 The second source is an image processed by a wavelet 
transform to a depth of three.  The image used here is the 

image �baboon� and the filter set is the standard 
9-7 configuration [7]. In this case, we have no idea what 
the optimal context-size will be or what sort of conditional 
histograms to expect. As with the previous source, we 
quantized the data with a uniform quantizer and varied N  
in an identical pattern.  Quantizers were designed for each 
subband by determining the difference between the 
maximum and minimum values of the coefficients and 
dividing this number of 24, the desired number of levels. 
This last number was set fairly arbitrarily since our focus is 
on the entropy coding. The context-space was defined 
using the four causal nearest neighbors, resulting in a raw 
count of 313,776, most of which have empty histograms. 

512 512×

Figure 2 plots the entropy as a function of  for two 
subbands: S0, the  low-pass subband and S8, a 

 highpass (LH) image. We can see that the 

N
64 64×

256 256×
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estimated conditional entropy decreases with increasing 
context-size; however, we also see that the difference 
between the estimated conditional entropy and the true rate 
obtained from the arithmetic coder with the proposed 
context-selection method is increasing due to data dilution. 
Considering S0 specifically, we see that data dilution 
begins to have a serious effect when N . At this 
point, the overall rate begins rising quickly from its lowest 
value of 0.99 bits/symbol. We found that S0 had 3020 
contexts with non-zero histograms in the context space. 
Using this number of contexts with a real arithmetic coder 
resulted in a rate of 4.52 bits/symbol, compared with an 
�ideal� conditional entropy of 0.46 bits/symbol.  

128=

4. FUTURE WORK 
An interesting extension to the above study would be to 
consider the joint design of both quantizers and entropy 
coders. One possible approach for doing this would be to 
use rate-distortion optimization techniques to design a 
quantizer for a specific entropy coder. The entropy coder 
could then be improved through a re-optimization via 
histogram-quantization, followed by a re-design of the 
quantizer. An even more interesting study would be to 
extend this idea by designing different quantizers for each 
of the possible contexts � essentially producing a finite-
state quantizer and entropy coder with the same procedure. 

5. CONCLUSIONS 
This paper has presented a method for selecting the 
contexts for adaptive arithmetic coders. Our method 
employs a histogram-quantizer to reduce the context space 
to the desired number of contexts. Similar to VQ, a 

splitting algorithm was used for initialization. Our 
experiments have showed that our method has the potential 
to automatically discern hidden structure in data and that 
our approach is superior to those based upon linear-
prediction (at least for certain types of data). For the 
wavelet-transformed image, we were able to use the 
proposed approach to find a (locally) optimal context-
selection that takes into account the problem of data  
dilution. We believe that this method has great potential for 
improving the performance of image compression 
algorithms. 
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Figure 2: Context Dilution in Image Subbands 
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