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A Delay Prediction Approach for Teleoperation
over the Internet

Tissaphern Mirfakhrai and Shahram Payandeh

Abstract|Based on the notion of wave variables, and
the idea of wave-integral transmission, a new method is
suggested to match the system parameters with changes
in the delay. An autoregressive model is used as a pre-
dictor to forecast the future values of the delay. The
predictions are used with a look-up table to tune the
gain with which the wave integrals are to be fed to
the system. This gain scheduling and tuning improves
the system performance and decreases the mismatch
between forces and velocities at the master and slave
sides.
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I. Introduction

THE concept of teleoperation been around for a
while [3]. Design and development of telerobotic

systems were further motivated with introduction of a
new ubiquitous means of communication, i.e. the In-
ternet. Along with general problems caused by time
delays, using the Internet as the means of communi-
cation can result in more di±culties in teleoperation
because of the variable time delay. The variable time
delays can result in wrong command order, decreased
control latency and even lost command packets.

It has been shown by Anderson and Spong [2] that if
the force and velocity signals are transmitted as they
are from the master side to the slave side in the pres-
ence of force feedback, the system will become unsta-
ble even with the smallest delays. They suggested a
modi¯ed control law, which was based on the transfer
function of a pasive transmission line, and guaranteed
the system stability.

Based on Anderson's ideas, Niemeyer and others [5]
proposed the concept of Wave variables. Using the
wave variables will result in a two-port communica-
tion line that is passive from outside. Therefore the
stability of the system during teleoperation is guaran-
teed.

The wave variables are introduced by rede¯ning the
system power °ow. Let F be the force applied to a
system and _x be the velocity of motion in that part of
the system. Usually, the power °ow is de¯ned as the
product of an e®ort and °ow pair such as:
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P = _xTF (1)

To introduce the wave variables u and v, we assume
two streams of power moving in opposite directions in
the system. This means we have divided the power
°ow to a stream going from the master side towards
the salve side (positive direction) (1

2u
Tu) and a stream

going from slave to master ( 1
2v

Tv). In other words, we
assume that the master side is always giving energy to
the system. This given energy might become negative
at instants, meaning that the power transfer is actually
from slave to master.

Therefore, to introduce the wave variables, we can
rede¯ne the power °ow as:

P =
1
2
uTu¡ 1

2
vTv (2)

We assume that u and v are linear combinations of
_x and F. Using equation 1 and 2, the wave variables
can be calculated in terms of _x and F as:

u(t) =
b _x(t) + F(t)p

2b
v(t) =

b _x(t)¡F(t)p
2b

(3)

The tuning parameter b acts as a weight function
and changes the relative magnitude of _x and F with
respect to each other. Any pair of the above vari-
ables (u;v; _x;F), can be selected as input or output
variables to the wave-transformer block. It is possible
to show that the communication line is passive if the
energy stored in the outgoing wave of v is limited to
the energy of incoming wave of u. Now, if these wave
variables are transmitted instead of the actual force or
velocity signals, the overall system would be passive
and no instability will happen.

Figure 1 shows the overall block diagram of the
wave-based teleoperation system. The operator ap-
plies a force Fhto the master manipulator with the
mass of Mm. The master controller is a PD controller
with the damping factor of Bm and spring factor of
Km. A feedback force is generated by the master con-
troller based on the feedback wave variables. This in-
put force along with the feedback force, will determine
the velocity of motion of the master manipulator. The
master force (Fm) and master velocity ( _xm) are then
coded into the wave variable um using equation 3. This



2wave variable is then transmitted through the commu-
nication line to the slave side.

On the slave side the wave variable is received after
going through the time delay. Then the wave variable
is decoded again using equation 3. The desired slave
velocity ( _xsd) is given to the slave controller, which
generates the required force on the slave manipulator.
This controller is a PD controller with the damping
factor of Bs and the spring constant of Ks. The slave
manipulator has a mass of Ms, and is receiving the
force Fe through contact with the environment.

Fig. 1. The overall system block diagram.

In this paper we suggest using a delay predictor to
predict the future value of delay. Introducing a delay
predictor in a wave-based teleoperation system can im-
prove the performance through feedbacking the inte-
grals of the wave variables. By tuning the value of the
feedback gain for the integrals, some of the lost prop-
erties of the signal can be restored the overall delay
can be reduced for force-precision or velocity-precision
tasks.

The paper is organized as follows: Section II ex-
plains the idea of transmitting the wave variable inte-
grals along with the original wave variables to improve
system performance. The integrals somehow represent
the energy of the wave variables. So if the energy dif-
ference is fed back to the system withy a certain gain,
the performance can be improved. Tuning this gain
according to the magnitude of the time delay helps
the performance, but requires a forecast knowledge of
the delay value. Section III discusses our suggested
method to predict the future values of the delay. In
section IV, we use these predictions to tune the sys-
tem through teleoperation. Section V includes some
concluding remarks.

II. Wave Integral Transmission

Depending on the task in hand, and whether we
want to match forces or velocities, there will always

be some mismatch between forces and velocities at the
master and slave sides. Even if the mismatch between
the velocities is small, the error will cause the positions
of the two manipulators to drift apart gradually as
time passes.

One performance improvement strategy is transmit-
ting wave integrals. As the wave variables themselves
carry information about the forces and velocities of
the two manipulators, their integrals will encode mo-
mentum and position. Thus transmitting the wave
integrals means some information about the position
of the manipulators. Although theoretically the po-
sition information can be decoded from the original
wave variables by integrating the velocities, the posi-
tion error will increase gradually because of numerical
integration methods used. Transmitting the wave in-
tegrals will solve this problem.

Niemeyer and Slotine [6], had suggested to transmit
the wave integrals U(t) =

R
udt and E(t) =

R
u2dt

along with the wave variables themselves to improve
the teleoperation performance. E(t) is the wave en-
ergy, meaning the energy that is being transmitted by
the wave stream in a certain direction.

They suggested using a ¯lter to obtain a corrected
version of us, denoted as uout, from the integral of
the wave variable U(t) =

R
udt and the integral of the

square of the wave variable E(t) =
R

u2dt(Figure 2).

Fig. 2. The con¯guration of the communication link using a
reconstruction ¯lter as suggested by Niemeyer and Slotine

The ¯lter is de¯ned as

uout(t) =

(
®E(t)
U(t) if U(t) 6= 0
0 if U(t) = 0

(4)

where ® is a constant that can modify the shape
of the ¯lter response. The ¯lter impulse responses for
® = 1, ® = 1:5 and ® = 2 are plotted in ¯gure 3.

The idea of transmitting wave integrals was further
investigated by Yokokohji, Imaida, and Yoshikawa in
[7]. They suggested that the integral of the master side
wave variable (um) should be calculated numerically
up to the time of each transmission and then should
be sent along to the slave side.

At the slave side, the integral of the received wave
variable ûs(t) is calculated similarly and is then com-
pared with the numeric value of the integral received
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Fig. 3. The impulse response of the reconstruction ¯lter sug-
gested by Niemeyer and Slotine for ® = 1, ® = 1:5 and ® = 2

from the master side. The di®erence (¢), can be cal-
culated as:

¢(t) =
Z

um(t)¡
Z

ûs(t)

¢ can be interpreted as a measure of change in en-
ergy of the signal, and will be fed back to ûs to re-
store the lost energy (Figure 4). ¢(t) is added to the
received wave variable, ûs(t), ampli¯ed by a certain
gain, hereafter called ¾. Finally we calculate the slave
wave variable as:

us(t) = ûs(t)¡¾¢(t) = us(t)¡¾(
Z

um(t)¡
Z

ûs(t))

(5)

Fig. 4. The con¯guration of the communication link using a
reconstruction ¯lter as suggested by Niemeyer and Slotine

Yokokohji et al. [7]had noticed the importance of
the gain of this feedback (¾) and had mentioned that
the value of the gain should be chosen such that the
system is well compensated, but at the same time not
to sensitive to disturbances. However, they had not
suggested a practical way to tune this gain.

Our simulations show that the optimal value of this
gain, to obtain the smallest error varies as the mag-
nitude of the time delay changes. This means that at
every value of T (t), the error in force/velocity can be
minimized if the magnitude of ¾ is chosen accordingly.
Therefore if the future time delay is known, a look-
up table can be formed for the purpose of ¯nding a
¾ value that results in the smallest mismatch between
the forces or velocities at the master and slave sides.
This idea will be discussed in detail in section IV

The question now is how to obtain an a priori knowl-
edge of the random time delay of the Internet. In other
words we need to predict the future value of the delay
to be able to tune the gain to its optimal value. The
next section addresses the method of prediction.

III. Modeling and Prediction

The Internet time-delays are random processes. A
random process is a random variable the value of which
also depends on time. Although random processes are
random and therefore unpredictable, models can be
created based on their past values to predict the fu-
ture values of the process with some error. The most
widely used models for random processes are the Mov-
ing Average (MA) Model and the Autoregressive (AR)
model. The moving average model acts basically as
a lowpass ¯lter on the incoming signal, and predicts
the future value of the signal to be the average of its
past values. However, averaging disregards all of the
highly stochastic behavior of the process. Thus an MA
model is not adequate for a highly stochastic process
such as the Internet time delay. Therefore, the autore-
gressive model has to be used for the delay prediction
application. For a study of alternative delay prediction
approaches see [10].

A. Model derivation

An autoregressive (AR) model is a model that re-
lates the value of the signal at time n to its values at
time n¡ 1 through

x[n] =
NX

i=1

aix[n¡ i] +w[n] (6)

where x[n] is the signal we want to model and N is
the order of our AR model, which can be selected as
a design parameter[4]. w[n] is white noise with auto-
correlation

E[w[n]w¤[n]] = ¾2
w±[n] (7)

where ¤ indicates complex conjugate, ¾2
w is the vari-

ance of the noise and the operator E[] takes the ex-
pected value of the parameter appearing between its
brackets.



4It is desired to ¯nd the coe±cients a1; a2; a3; :::aN
such that if the last N values of x are known (x[n ¡
1]; x[n¡2]; :::x[n¡N]), the next value of x (x[n]) can be
predicted using equation 6 with the smallest error com-
paring to its actual measured value. It can be shown
[4] that the optimal values of ais to give the smallest
error between the predicted value and the actual mea-
sured value of x are the solutions of the Yule-Walker
matrix equation [1].

We measured the delay from the Simon Fraser Uni-
versity (SFU), BC, Canada to a number of di®erent
destinations around the world. [1]. The results illus-
trated in the present paper were measured from the
communication link to the Data Communication In-
corporation (DCI) in Iran, which lies almost on the
exact opposite side of the globe to SFU. As the delays
of the Internet are known to have a quasi-periodic pro-
¯le over a week [9], we create our model based on the
delay values observed during a week. This model is
then used to predict the behavior of the delay over
the week after the observations. Delays are measured
several times every day and a piecewise model is con-
structed from all sets of results.

The sampling times were arbitrarily selected to be
12:00AM, 4:00AM, 8:00AM, 12:00PM, 4:00PM and
8:00PM everyday. These particular times were se-
lected such that they fall in di®erent times of the day,
representing very low, very high and average data traf-
¯c load. Starting at each of the above times, the delay
was measured 24 times using the ping utility. The
experiments were continued for 2 weeks.

For each experiment, the Root Mean Square (RMS)
error was calculated for di®erent model orders, to pick
an order that gives us the smallest error. The errors
versus the model order N are plotted in ¯gures 5.a
and 5.b. The error seems to be decreasing when the
model order N is increased. To avoid unnecessarily
large computation, N = 24 was accepted as being large
enough for our purpose.

Figure 6 shows 6 sets of our 24 model parameters,
calculated at the six measurement times during a cer-
tain day.

B. Predicting delays

Once the model is created based on the data from
measurements, the values obtained from this modeling
process are used to predict the behavior of the system
during the second week. This process of measuring,
modeling and predicting will continue during teleoper-
ation. In ¯gure 7, the predictions are compared with
the actual values of the delay obtained through mea-
surement. The prediction and the real measured val-
ues are less then %20 di®erent, except at times of fatal
crashes at one of the master and slave computers.

Fig. 5. Model parameters for connection with the DCI system
on Saturday, plotted at the 6 measurement times.

Fig. 6. Model parameters for connection with the DCI system
on Saturday, plotted at the 6 measurement times.

Fig. 7. Predicted delays(dashed) compared to the actual values
of delays(solid) of the DCI sever during the second week.

IV. Wave Integral Gain Scheduling

In our scenario, the operator applies a force in the
form of a square pulse with the magnitude of 2N to



5a master manipulator with unit mass (Mm = 1Kg).
This manipulator is controlled by a PD controller with
sti®ness factor of 0.5 N=m (P) and damping factor of
1 N=m=s (D). This controller moves the master ma-
nipulator by responding to the velocity dictated by
the operator and the velocity that is obtained by the
feedback system through the network.

The master side wave transformer converts the force
and velocity signals to um, which is to be transmitted
through the communication line. The wave impedance
b is chosen to be equal to 1, to give equal weight to
the force and velocities at both master and slave sides.
The delay of the communication line (T (t)) is assumed
to be variable and will be discussed further below.

The slave side system is assumed to be exactly
similar to the master side. So the slave side wave
transformer works with a wave impedance also equal
to 2; the slave manipulator also has a unit mass
(Ms = 1Kg) and the controller gains are exactly the
same as those of the master side. The slave ma-
nipulator is assumed to be interacting with an en-
vironment, consisting of a spring (k=1 N/m) and a
damper (B=0.5 N/m/s). The manipulator is pushing
the spring against a solid wall, while being held by a
damper.

The delay of the slaveÃmaster communication link
is supposed to be equal to that of the master!slave
link, i.e. T (t). We also assume that there is no scaling
between the master and slave sides.

Let us de¯ne the force error to be the maximum
mismatch between the forces at the master side and
the slave side.

Ferr = maxfFm(t)¡Fs(t ¡ T (t))g (8)

The velocity error is similarly de¯ned as the max-
imum mismatch between the velocities at the master
side and the slave side.

_xerr =maxf _xm(t)¡ _xs(t¡ T (t))g (9)

Our simulation studies show that for every value of
T , there is a value of ¾ to minimize the error.

Figure 8 shows the behavior of the above mentioned
errors with changes in T and ¾. It can be seen that
for every value of T , the value of ¾ can be chosen such
that the error is minimized. For each T in ¯gure 8, the
top surface of one of the error bars is painted black to
show the optimal value of ¾ . In the same ¯gure, the
hatched squares show some limitations, where the sys-
tem becomes unstable due to the choice of an improper
¾. At those values of ¾ the amount of energy fed to
the system for compensation is more than necessary
and that makes the system non-passive and unstable.

When operating, the delay predictor will estimate
the future value of the delay. This estimated value of

Fig. 8. Force and velocity errors at di®erent estimated delays
for di®erent values of ¾.

T is then used by the gain scheduler to search in a
look-up table like ¯gure 8 to ¯nd the optimal value
of the gain ¾. Figure 9, compares the system perfor-
mance with the optimal value of ¾ with the system
performance with no compensation. It is visible that
the salve force follows the desired force more closely
when compensation is added.

It should be noted that the value of ¾ to minimize
the force error, is not always the same as the value of ¾
to minimize the velocity error. This can be seen from
¯gure 8, where the black painted path on the force
error plot(8.b), is di®erent from the black painted path
on the velocity error plot(8.a).

Figure 10 shows the velocities on the master and
slave sides, with and without a compensation gain that
minimizes the force error. It can be seen that although
applying the compensation gain of ¾ = 0:5 has the best
compensation e®ect on the force, it actually increases
the di®erence between _xm and _xs.

Also at large delays, if the ¾ value exceeds a certain
value the system goes unstable. The hatched squares
in ¯gure 8 represent such cases. This instability can
be explained by noting that adding the ¾-path, we
are violating the conditions of passivity as stated in
Niemeyer's calculations in [8]. Thus if we add too
much feedback to the system, we might end up with
positive feedback, which tends to destabilize the sys-
tem.
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Fig. 9. Forces at E(T(t))= 500 ms and E(T(t))=700 ms

Fig. 10. _xm, _xs without compensation and _xs with ¾ = 0:5
that minimizes the force error.

Therefore, when the future value of the delay is pre-
dicted, we can use a look-up table similar to the black
path in ¯gure 8 to retune the system. This way choos-
ing the optimal value of ¾ can minimize our error on
force or velocity, or both. When dealing with large
delays the value of ¾ has to be set to zero, to guaranty
the passivity of the system and to keep stable opera-
tion. For example, if the predicted value for T (t) is
1 second, it is optimal to set ¾ = 0:5 based on ¯gure
8.a if a minimal force error is intended. Also ¾ = 0:2
will result in minimal velocity error as is visible from
¯gure 8.b.

V. Conclusions

A method is suggested to decrease the error between
forces/velocities of the master and slave manipulator.
The future value of the variable time delay is predicted
based on its past values using an Autoregressive (AR)
model. A look-up table is then used to ¯nd a value of
the wave integral feed-forward gain ¾ to minimize the
error between the force/velocities of the master and
slave manipulators. By tuning the gain to this opti-
mal value, some of the lost properties of the signal can
be restored, the error between the master and slave
forces/velocities is decreased and the overall teleoper-
ation system performance is improved.
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