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Abstract

A study of di�erent classes of controllers for mechanisms under the inuence of low

velocity friction is conducted. Many methods are proposed in the literature for friction

compensation, but there has been no signi�cant analysis of these methods with respect

to each other. Also lacking in the literature is some form of categorization, under

which it is possible to describe and study their performance. This paper provides

an experimental and analytic study of controllers previously proposed for low velocity

friction compensation. Since each controller will be evaluated on the same experimental

platform, the results can be quanti�ed to provide an approach by which to evaluate

the performance of the controllers relative to each other. Some simulations will also

be performed to show the e�ect of certain system parameters on the performance of

these controllers.
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1 Introduction

Friction within mechanisms is unavoidable. Rigid bodies in contact and moving relative to

each other experience the e�ect of friction. The friction characteristic of rigid bodies moving

relative to each other at substantial speed is fairly linear. As the velocity of the contacting

bodies decreases, the frictional e�ects the mechanism experiences become highly nonlinear,

and is not well understood. When the bodies in contact are at rest, there is an opposing

frictional force equal to the applied force on the bodies. This sticking force (stiction, Fig.

1) will prevent any motion until the applied force can surmount the maximum stiction level

inherent between the materials in contact. Thus at zero velocity it can be stated that the

function is discontinuous, and is normally modelled by a signum function.

It has been experimentally determined [1], that immediately after motion has occured

the friction decreases in value rapidly (re�ered to as the Stribeck e�ect), to some lower level

after which it will increase fairly linearly with velocity as shown in Fig. (1). For the di�erent

regions of the friction model, this paper will use the following notation:

�stk: The value of the stiction torque.

�slp0 : The lower bound on the downward bend.

�slp: Viscous friction.

Low velocity friction is sometimes called \Stick-Slip" friction. Stick-Slip friction puts a

lower bound on the performance that can be extracted from a mechanism, such as minimum

velocity achievable and persistent steady state errors. Symptoms of this phenomena in

mechanisms attempting to move at low velocities can be anything from jerky motion or

limit cycles, to catastrophic instability. The e�ects of Coulomb friction and Stiction have
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inuenced the design of many mechanisms, from the milling process [2], to applications

involving space dynamics [3].

The factors a�ecting the frictional relationship between any two materials are very com-

plex [4] [5]; among them are the normal force on the bodies, the length of time at which they

have been at rest, the relative velocity, and some researchers have pointed out that even the

history of velocity is also a determining factor. As such, the task of modelling the friction

characteristics between bodies moving relative to each other is a challenging one.

For the analytical studies of this paper, a model of friction was chosen to be to be that

of �g. (1). This model can be described mathematically as:

�f = �slp( _q) � (�( _q)) + �stk( _q) � (1 � �( _q)) (1)

where

�( _q) =

8>>><
>>>:

1 _q > �

0 _q � �

� is the zero bound assigned to the velocity to facilitate numeric simulation [6], where any

velocity within � is taken as zero. �slp is the function describing the friction at nonzero

velocities, while �stk describes the friction when the velocity is zero (within �).

There are manymodels used to describe stiction and viscous friction. Stiction and viscous

friction will be described mathematically as:
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�stk =

8>>><
>>>:

� � � �stk

�stk � > �stk

(2)

�slp = sgn( _q)(�stk + [�slp0 � �stk][1� exp�a _q]) + b _q (3)

which is a nonlinear function, discontinuous at zero velocity, falling o� exponentially to

some lower bound �slp0 , then increasing linearly with nonzero velocity. b is the damping

coe�cient, the rate at which the viscous friction increases with respect to velocity; � is the

applied torque to the system. The signum function is modelled mathematically as:

sgn( _q) =

8>>>>>>>><
>>>>>>>>:

1 _q > 0

0 _q = 0

�1 _q < 0

This paper will examine controller classes proposed for the purpose of compensating for

stick slip friction in mechanisms undergoing free motion. Compensation categories will be

divided into linear and nonlinear. The linear control schemes consist of PD and PID methods.

The nonlinear class will consider nonlinear compensators which supplement the existing

linear controllers. Section (2) will describe the system used to test these compensators, as

well as provide the set of equations of motion that govern it. Sections (3) and (4) provide

a theoretical analysis of the linear and nonlinear controllers respectively. In section (5) the

experimental setup will be described as well as a discussion of the results obtained from
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implementing each of the controllers in the previous sections. Concluding remarks on the

nature of these compensation schemes are presented in section (6).

2 System Description

The experimental platform is a 2 DOF planar manipulator, with known dynamics. For

our experiments and simulations, unconstrained motion of the distal link is considered (Fig.

6), in e�ect creating a 1 DOF system with no gravitational e�ects. The complete system

equation for the 2 DOF manipulator are formulated as:

I(q)�q+ C(q; _q) _q = � � �f (4)

with I(q) being the system inertial matrix, and C(q; _q) the matrix of coriolis and centrifugal

terms. where:

I(q) =

2
6664
p1 + 2p3cos(q2) p2 + p3cos(q2)

p2 + p3cos(q2) p2

3
7775 ; C(q; _q) =

2
6664
� _q(2 _q1 + _q2)p3sin(q2)

_q2
1
p3sin(q2)

3
7775

(5)

The terms p1 to p3 are constants de�ned by the dynamics of the system. q1 and q2 are

the angular position of the proximal and distal joints respectively.

For the 1 DOF system, we assume q1 and all its derivatives are zero. Thus the equation

of motion can be written as:
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p2 �q2 = �2 � �f (6)

where p2 consists of the elbow link inertia and also the motor rotor inertia. For the rest of

the paper, p2 will be considered to be the inertia of the system and denoted I, �2 to be the

applied torque � , and q2 as the joint variable q. We thus have a set of scalar equations which

describe the dynamics of the system:

I�q = � � �f (7)

�f is the disturbance due to friction, nonlinear in general.

3 Linear Methods

3.1 PD schemes

Proportional plus derivative is a linear time-invariantmethod of joint control in manipulators.

It has also been shown to be globally asymptotically stable [7].

The main drawback of PD control when the system dynamics include dry friction, is the

existence of a steady state error throughout the trajectory. It is well known that increasing

the proportional gain can reduce these errors, but the required accuracy may well be beyond

the capacity of the actuators, and increasing proportional control also results in increased

oscillatory behavior. For example, given a set of controller gains, when the angle of the distal

link is within the proximity of the reference, the position error is small, thus the resulting

proportional gain is unable to surmount the stiction level in the joint. Hence the control
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torque is unable to overcome the opposing friction force.

For the system described in (7), the closed loop dynamics with a PD controller become:

� = �kp(q)� kd( _q) (8)

�q = �
1

I
(kp(q) + kd( _q)� �f ) (9)

It has been shown by Hahn [8] using a mass-spring model, that the discontinuity as-

sociated with dry friction when proportional control is present, will cause multiple stable

equilibrium points. These equilibrium points occur when trajectories at zero velocity, are

within certain limits of the position error, and any trajectory within these limits at zero

velocity will get stuck.

The system was simulated to show the existence of these equilibria. The friction model

of eq.(1) is used for this simulation. The plots (Fig. 3) show the convergence for the system

with and without dry friction. For a given set of parameters, the reference point was set

further and further away from the origin. The parameters used in this simulation were:

kp = 50

kd = 4

�stk = 2 N:m

�slp0 = 1 N:m

b = 1 N:m=rad:sec�1

I = 1 Kg:m2

(10)
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The trajectories terminated within the bounds as speci�ed in [8].

3.2 PID Control

PID control is another linear time-invariant method for joint control, and is one of the more

popular industrial approaches. The advantage of PID control is that it leaves no steady state

error (ess ! 0 as t ! 1). Cancelation of the steady state error is due to the presence of

integral control action which has been shown to be robust [9].

Substituting the PID control law into the system open loop dynamics (eq. (7)), The

system dynamics become:

�q = �
1

I
(kp(q) + kd( _q) + ki

Z t

t0

q � dt� �f ) (11)

Integral action in a control law with dry friction present has been shown to be capable of

producing limit cycles. A limit cycle is a periodic equilibrium point. They are characterized

by trajectories circling the origin at a constant radius in the state-plane. Both describing

function analysis [10] and the contraction mapping theorem [11] [12], have been used to show

its existence.

A system under PID control can be made unstable when the moving body (joint of the

manipulator) is stuck and the control gains are too high. As time proceeds, the integral

error which is building up to move the joint from its stuck con�guration becomes so high

that the joint overshoots the origin and comes to rest further away from it. This will cause a

larger integral action, and the e�ect is cascaded. This is demonstrated by taking the system

described by (11) and running the simulation with a large integral gain and initial conditions
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which place the system inside a sticking region.

Numeric simulations are performed to show the e�ect various changes in the system dy-

namics can have on the trajectory, and reveal contraction mappings for the system described

in 11. When a set mapped onto itself is a contraction mapping, then there is a unique �xed

solution (in other words, a limit cycle) for that mapping within the set [12]. However it

remains to show that the mapping of the set of points within a sticking portion of the tra-

jectory back onto itself is indeed a contraction mapping. Theoretical methods used to show

this [12] [13], rely on the mapping function to satisfy a Lipschitz condition. With Coulomb

friction in the system dynamics, this is not the case, so the use of numeric simulations must

be used instead [11].

Figure (4) shows trajectory behaviors and indicate the existence of limit cycles for the

friction model described in eq.(1). Figure (4a) shows the trajectory for the default parameters

of the friction model (eq.(10) and an integral gain of Ki = 100). In Fig.(4b) the proportional

gain is doubled, as expected the amplitude of the limit cycle is halved. This is consistent

with the fact that twice the proportional gain will cause the actuators to output twice the

amount of torque for a given position error. Fig.(4c) shows the trajectory when the integral

gain is increased by a factory of 5; the spiral is a source and extends outwards indicating

an unstable system. The damping coe�cient was then increased by a factory of 5 shown in

Fig.(4d), the limit cycle amplitude remained constant as the system is dampened.

To further examine the response, one of the trajectories used to test the response of

the PD controller was used with the PID controller to see the di�erence. A step input was

applied to the system, and its convergence properties were studied in the state space. The

limit cycle persisted with the PID scheme, but its amplitude was much less than the steady
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state error exhibited by the PD controller for the same step input (Fig.(4e))

4 Nonlinear Methods

This section presents an analytic overview of two nonlinear controllers presented in the

literature, [14] [15]. Both controllers use a nonlinear feedforward compensation scheme to

supplement a PD control law. The methods di�er with respect in which the compensating

controller is implemented. In [15], a piecewise linear function is generated which is a function

of the sticking limits similar to those shown in [8], (e.g. Fig(3(a)). The other nonlinear

compensator implements a tanh() function which is continuous and twice di�erentiable.

Bounded stability of both controllers is demonstrated. Lyapunov's direct method is used in

[14], whereas a modi�ed version of Lyapunov's direct method employing the notion of the

dini-derivative is used in [15] to account for the fact that the controller is discontinuous at

the origin. In [14], Lassalle's theorem is exploited to show asymptotic convergence of the

solution trajectories, as well as error bounds within which the trajectories will converge.

In the sections to follow, an analytic overview of these methods will be presented, with

proofs of their stability.

4.1 Smooth Continuous Nonlinear Compensation

The control law in [14] uses a nonlinear addendum to supplement an existing PD scheme.

The feedforward additive is a tanh() function of setpoint error. This forces an extra input

to be fedforward until the error is within the proximity of zero, the accuracy of which is

controlled by a parameter in the tanh() function.
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The proposed control law is de�ned as:

� = �kpq � kd _q � �c(q) (12)

q = position error:

�c(q) = �mstk tanh(�q) (13)

�mstk = �stk + � (14)

�stk = maximum stiction torque

The maximum stiction torque can be experimentally determined, then supplemented by

a small positive constant � to guarantee the stiction levels are always exceeded. The unitless

constant � (not to be confused with that used in the friction model (1)).is used to adjust

the slope of the tanh() function in the vicinity near zero error. This in turn adjusts the

steady state error achievable. This controller is illustrated in Fig. 5. To get an estimate of

the value to use for �, the function tanh(�x) can be plotted for x values around the vicinity

of the maximum tolerable error. � can be changed till the function saturates at an x value

within the speci�ed error tolerance.

The controller adds an extra compensating torque equal to the magnitude of �mstk, which

always exceeds the magnitude of the sticking torque of the joint. This forces the trajectory

to a unique equilibrium point closer to the origin.

Using our 1DOF system equation (7), and control law described by (12), we get the

system's equation:
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I�q = �kd _q � kpq � �c(q) + �f (15)

The friction model used is similar in form to eq.(1), with �stk de�ned as in (2). To

investigate the robustness character of the controller, di�erent models are used for de�ning

�slp, one of which is (3), and is formulated as:

�f = �sgn( _q)�slp � (1 � ksgn( _q)k)�stk (16)

The system (15), is globally asymptotically stable with the nonlinear term given by (13).

To show this, a Lyapunov function candidate is selected as follows:

V =
1

2
I _q2 +

1

2
kpq

2 +
�stk

�
ln(

e�q + e��q

2
) (17)

which is positive de�nite and satis�es a Lipschitz condition. Its derivative, by substituting

the system dynamics (15) into (17) can be written as:

_V = I _q�q +
1

2
_I _q2 + kpq _q + �stk tanh(�q) _q (18)

= �kd _q
2 + _q�f (19)

= �kd _q
2 � _q � sgn( _q)�slp � (1 � ksgn( _q)k)�stk (20)

= �kd _q
2 � k _qk�slp � 0 (21)

For a 1DOF system, there are no coriolis terms, and the inertial component of the
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dynamics is time invariant ( _I = 0). Equation (21) and inequality arises from the de�nition

of �f , and the fact that for any q, there exists the relationship q � sgn(q) � 0. _V = 0 only

when _q = 0; so by Lassalle's theorem the system is globally asymptotically stable [16]. The

concept of the invariant set used with Lassalle's theorem is used again to reveal the bounds

on the error. It is known that the steady state solution of _V will converge to a value within

the largest invariant set, thus the invariant set will provide the bounds on the steady state

error.

Let E be the invariant set, and substitute the conditions therein into the system dynamics,

and using the inequality �stk � �mstk, we get:

E = fq 2 Rj �q = _q = 0g

= fq 2 Rj kpkqk+ �mstk tanh(�kqk) � �stkg (22)

The two arguments on the left of the inequality in (22) are always greater than or equal to

0, then we have:

�mstk tanh(�kqk) � �stk (23)

solving (23) we can have the following bound on q inside the invariant set, indicating the

bounds on the steady state error:

q �
1

2�
ln(1 + 2 �

�mstk

�
) (24)
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4.2 Discontinuous Compensation

This controller uses the sticking limits qh and ql given in in Fig. 6, to provide bounds within

which extra compensating torque will be applied [15]. Unlike the previous method, this

compensating input is only applied when the position error is small enough to bring about

sticking (see �g. 6). The added input ceases when the position error is zero.

The friction model used to demonstrate this controller is the same as that de�ned in

eq's. (1) to (2). �slp is assumed to be an arbitrary continuous function satisfying a Lipschitz

condition.

The control law is de�ned as follows:

� = �kpq � kd _q � �c(q) (25)

�c(q) = kpqc = compensating control

qc =

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

0 q > qh

(qh � q) 0 < q � qh

0 q = 0

(ql � q) ql � q < 0

0 q < ql

(26)

Stability is proven using a modi�ed version of Lyapunov's direct method, involving the

notion of the \Dini-Derivative" for the discontinuous trajectories in the controller. The

energy function is similar to that used in [14] except for the nonlinear addendum. The

Lyapunov function candidate is formulated as follows:
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V =
1

2
I _q2 +

1

2
kpq

2 + g(q) (27)

where,

g(q) =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

1

2
kp(qh)

2 q > qh

kp(qhq �
1

2
q2) 0 � q � qh

kp(qlq �
1

2
q2) ql � q � 0

1

2
kp(ql)

2 q < ql

(28)

This nonlinear addendum is shown graphically in �g(7).

It can be seen from (27) and Fig(7) that this energy function is positive de�nite as well

as decrescent for trajectories outside the region of discontinuity. Using the 1DOF dynamic

model of the distal link de�ned in eq.(7)and the controller of eq.(25), the derivative of the

energy function of eq.(27) along the solution trajectory can be written as:

_V = kpq _q + I _q�q + _g(q) _q (29)

= kpq _q + _q(� � �f ) + _g(q) _q (30)

which from eqs.(1) - (2), (25), and the fact that outside the discontinuity �stk is zero, can be

written as:

_V = �kd _q
2 � _q �slp( _q) + _q( _g(q)� kpqc) (31)
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From eq.(26) and eq.(28) we see that kpqc = _g(q) except when q = 0, where _g(q) is

unde�ned. eq.(31) becomes:

_V = �kd _q
2 � _q�slp( _q) � 0 (32)

For the trajectories within the region of discontinuity, the notion of the 'Dini-Derivative'

is used. These are the limiting values of _V on both sides of the discontinuous region, and

denoted D � _V (�), and can have any of four values. For any point on the trajectory where

_V exists, the four possible dini-derivatives have a common value equal to that of the regular

derivative [17]. Since V is continuous, and _V is negative semi de�nite (n.s.d.) outside of

the discontinuous region, the dini-derivatives are also n.s.d. for points within the region.

The dini-derivatives are therefore n.s.d. over the entire trajectory, and from eq.(32), _V =

0 implies _q=0 which is the q axis, and no complete trajectories can be contained there, so

D � _V (�) is negative de�nite over the entire trajectory, implying global asymptotic stability.

5 Experimental Results

5.1 Experimental Setup

Each controllers which have been discussed in the previous sections has been implemented

on a planar 2DOF manipulator, with the base link held stationary while the elbow followed

a trajectory.

The test trajectory for the joint is a 90o clockwise rotation following a smooth (inverted

cosine curve) velocity pro�le. A smooth acceleration pro�le commencing at 0 (sine curve)
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was chosen so as not to cause extreme setpoint error at the start and end of motion. The

entire trajectory has been parameterized as follows:

accn = amax � sin(
2�t

T
)

vel = �amax �
T

2�
� cos(

2�t

T
) + amax �

T

2�

dist = �amax � (
T

2�
)2 � sin(

2�t

T
) + amax �

T

2�
� t

To further parameterize this pro�le, the maximum velocity and rotation angle is speci�ed

as:

amax =
� � vmax

T
=

2� � dist

T 2

T =
2 � dist

vmax

amax =
� � vmax2

2 � dist

where we have de�ned:

accn : angular acceleration,

vel : angular velocity,

dist : degrees to rotate,

amax : maximum acceleration,

vmax : maximum velocity.

The manipulator uses brushless DC motors that have high torque capabilities. The motor

responsible for the distal joint has a maximum torque output capability of 39 N.m, and has
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a resolver that gives 153,600 counts per revolution. This is read by a quad decoder on a data

acquisition card using a PC as the workstation. The control algorithm was executed at a

sample rate of 1 msec. and is run on a DSP processor, to which the data acquisition board

is connected.

The data sampled consists of link position, output torque, and commanded position,

from which are calculated the actual velocity, commanded velocity, and positioning error.

The stiction level of the joint was found experimentally by applying a linearly increasing

torque to the joint motor, till motion is detected. This was found to be around 2N, and �

used for the smooth nonlinear controller (eq.(14)) is taken as 0.5 N.m. With this data, the

experiment was conducted implementing each of the controllers.

5.2 Results and Discussion

In comparison with the PD controller (Fig.8-9), it is apparent that both nonlinear controllers

(Fig. 12, 13), and the PID scheme (Fig. 10-11) o�er superior performance.

As demonstrated in the simulations, the amplitudes of the limit cycles associated with

the PID controller are well below the steady state error level of a PD controller even when

the proportional gain is increased.

The velocity lag at the beginning of motion is seen with the PD and PID controllers

(Fig.(8) - (11)). This is due to the inherent stiction level. Before any motion can commence,

both the integral and proportional gains must be large enough to counteract this e�ect. The

rate of increase of the integral control being proportional to time, and that of the proportional

control increasing with position error.
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The nonlinear controllers however don't exhibit this lag (Fig. (12) - (13)), and also

o�er better tracking performance. This is due to the nature of the nonlinear compensators.

There is no latency period for the gains to build up to a level large enough to counteract the

stiction; once the error is small enough, the additive compensation is activated and there is

enough torque to overcome stiction. Once this initial lag is �nished however, the tracking

performance of PID controller is not much inferior to the two nonlinear controllers.

The drawback of the nonlinear controllers is with their oscillatory response and their

jerky torque pro�les. In e�ect, these nonlinear controllers are simply error dependent high

proportional gain controllers; as a, result, whenever more control input is needed the pro-

portional gain increases and so does the oscillations and erratic torque outputs. There is no

additional damping added in either control law. A look at the torque pro�le for the controller

in [14] in �g.(12) shows this. This controller adds extra stiction compensating torque at all

points on the trajectory, not just when needed, as a result the e�ective proportional gain of

the smooth nonlinear controller is always higher than that of the discontinuous one, and the

linear controllers.

A comparison between Fig's. (12) and (13) will show that the controller in [15] has much

less oscillations at the end of its trajectory than does the controller in [14]. The oscillations

at the beginning of motion are due to the fact that when the nonlinear compensation is

dominant, which is due to a small setpoint error and stiction being in e�ect, there is a

proportional control that acts with relatively little damping. Due to inertia e�ects, stiction

is not present as the link approaches the reference point, and the motion at the end of

the trajectory does not need the compensating control as at the beginning. The smooth

controller however, has a high proportional gain approaching the end of the trajectory, and
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as the error decreases, so does the derivative control, causing an underdamped oscillatory

response. On the other hand, the discontinuous controller has a normal PD gain approaching

the reference point and so does not to excite the system into oscillatory behavior.

From (24), it is obvious that the setpoint errors do not lie within the bounds predicted

theoretically. The derivation of this bound was done using conditions of the invariant set

that show this controller to be stable. The time constant of the theoretical system is much

too large to be realized by any real system implementing setpoint control, i.e. a new setpoint

will be generated long before the convergence time of the theoretical system; thus this error

bound is not readily achievable in practice.

6 Conclusions

Classes of controllers for a manipulator joint under the inuence of low velocity friction have

been compared. Linear and nonlinear methods were used in the comparison. The linear

methods consisted of PD and PID compensators, while the nonlinear compensators consisted

of a piecewise linear compensation model as well as a smoother continuous model. The

experiments were done on a 2DOF planar manipulator, using the distal link, in e�ect creating

a 1DOF type manipulator. Both nonlinear controllers proved superior in performance to a

PD controller for the same P and D gains, even when higher gains are used with the PD

controller. Their tracking performance was also superior to the PID type controller, but at a

cost of oscillatory response and jerky torque pro�les. The two nonlinear controllers appear to

give similar performance for tracking accuracy, however if the nature of motion is taken into

account, the discontinuous controller has the advantage of providing much smoother motion
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through a much less oscillatory response. This is due to the lower overall proportional control

imposed on the system over the entire trajectory. The stability of the smooth controller is

much simpler to demonstrate, as are the error bounds, which are shown however, not to be

realizable with setpoint control.

The PID controller o�ers a good combination of tracking accuracy and smoothness of

response, even with the limit cycles. It has also been shown that the small amplitude of

these limit cycles does not have an adverse e�ect of the system behavior, while maintaining

tracking accuracy, when unconstrained motion is considered.
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