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Abstract: In general, the rigid-contact assumption has been used to estimate the frictional
moment between two bodies in contact. In a multi-body connection, two types of passive inter-
connection are considered in this paper, namely pin joint and spherical-ball joint. The joints are
assumed to be passive at the localized configuration space of the multi-body systems and are as-
sumed to be actuated remotely. The traditional approach for modelling such frictional contact does
not consider the elastic deformation of joints. Two approximate models are presented for both
revolute pin joints and spherical-socket ball joints. The proposed models offer a more accurate
estimation of the Coulomb frictional moment. The new models offer a compact solution which can
be easily extended to other geometrical multi-body contact configuration with various degrees of
clearance. The proposed models can be used in the dynamic modelling and control of multi-body
systems in frictional contact.
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1 Introduction

In general, all linkage mechanisms and multi-body systems consist of joints and linkages, and rotary
joints are the most commonly used type of joints. Rotary joints consist of two general categories: a)
revolute joints(providing one Degree of Freedom (DOF)), and b) spherical joints(up to three DOF).
Specifically, the revolute pin joints and spherical socket-ball joints are used when the requirements
include: a) relatively high radial loads at the joints, b) very high stiffness of the joints to reduce
the vibrational tendencies of the system, and c) simple and compact joints design. However, these
two types of joints have disadvantages(compared to low friction bearings with intermediate rolling
elements) such as: a) lower operational speed, b) relatively shorter service life, and c) higher friction.
This higher level of friction requires to estimate/predict the frictional moment caused by the joints
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Figure 1: The flexible stem of an endoscopic tool.

more accurately both in static and dynamic cases. The motivation for accurate modeling of frictional
moments in these types of joints are explained further by the following examples:

I) In the static cases(e.g. truss-cell systems[1], or endoscopic multi-jointed devices [2][3]), it
is desired to predict/estimate the maximum frictional moment capacity of the static locked joints
under different loading conditions.

II) In the dynamic cases of multi-body systems, the frictional moment at each joint is a con-
tributing factor in the dynamic interaction between bodies. For accurate modeling of the system,
it is essential to model frictional moment with the required accuracy[4] [5][6].

III) Another specific example (whit both static and dynamic applications) is the flexible stem
in endoscopic tools which consist of several spherical joints (Figure 1). This allows the tools tip
to have two degrees of freedom. Each joint is actuated by tendon like wires at the periphery. The
unique feature of this design is that, these joints are held together, moved, and locked by changing
the tension in the tendons. In the static case, when the joints are locked, the tension in the wires
should exceed some minimum limit in order to prevent the joints from any slipping. However, in
the dynamic case of moving joints, the tension must be reduced in some of the wires to allow the
joints to rotate in the desired direction. In both of these cases it is important to estimate accurately
the frictional moments of joints which are controlled by the tension of tendons.

As mentioned above, there are several papers related to experimental applications/studies of
Coulomb frictional moment of joints [2] [6] [1], as well as general theoretical studies [4] [5]. Reference
[7] is a good reference book on general modelling and solution to various contact mechanics problems.
In all of these works, it is assumed that joints are absolutely rigid, and the contact is modeled as
a point contact in the spherical socket-ball joints, and a line contact in revolute ones, where all
the frictional force is concentrated on. This has led to simplified model for predicting the frictional
moment.

However, in general there is a contact area caused by the elastic deformation of the joint that
the Coulomb friction is acted on instead of the point contact. In this paper, contacts in the joints
are considered elastic and using the elliptic load distribution over the contact surfaces, approximate
models are developed which can predict/estimate the frictional moments with better accuracies.
Finally, mathematical models for estimating the range of clearance in the joints, that ensures full
contact and maximum stiffness of the pin and socket-ball joints, are presented.
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Figure 2: The rigid joint under load F .

2 Preliminary analysis

The simple derivation of current model is demonstrated here by the assumption of absolute rigidity
of the joint with a point contact between its surfaces (Figure 2, the cross sectional view for both
cases). The force F is the resultant external load acting on the joint (Figure 2), and the basic
equilibrium of forces and moments for both cases are :

∑

Fx = −N sin θ0 + µN cos θ0 = 0
∑

Fy = N cos θ0 + µN sin θ0 = F
∑

Mo = µNR = F l
where

N = The reaction force at the contact point.
l = The distance of force F to the center of joint.
θ0 = The equilibrium angle of contact point.
µ = The coefficient of friction between the two surfaces of joint.

The first equation leads to: tan θ0 = µ, and solving the other two equations, provides: N =
F/

√
1 + µ2, and :

l

R
=

µ√
1 + µ2

. (1)

Using the above equations, we can obtain the frictional moment acting on the joint (M = µNR)
as:

M = F × R
µ√

1 + µ2
(2)

and for small values of µ (e.g. µ < 0·3 ), the value of
√

1 + µ2 can be approximated to be equal
to 1, Equations (1) and (2) reduce to: l/R = µ, and M = µFR.

Equation 2 is used extensively in the literature [1]-[2] [4]-[6] to predict frictional moment in
revolute or spherical joints. However, the above simplified analysis does not consider the elasticity
of the joints. The following sections take into account the effects of elastic deformation and stress
distribution over the contact area in revolute pin joints, and spherical socket-ball joints, in order to
estimate the Coulomb frictional moment more realistically, and with higher accuracy.
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Figure 3: The stress distribution between two cylindrical surfaces.

3 Revolute pin joints

This section first presents the study of the stress distribution on the contact area of revolute joint,
then by applying the Coulomb friction law at the contact area, the equilibrium analysis is carried
out.

3.1 The radial stress distribution

The radial contact stress σr between the two cylindrical surfaces of radiuses R and R′ due to
deformation are known[8][10] to have elliptical distribution as:

σr = σmax

√

1 − x2

a2
. (3)

When the material of the two surfaces are the same, with the module of elasticity E and Poisson
ratio ν ≈ 0·3 (true for most alloys), the maximum radial stress σmax at the center line of contact
region is :

σmax = 0·418

[

PE

b
(
R′ − R

RR′
)

]1/2

(4)

and the width of contact area (= 2a, Figure 3) can be obtained by :

a = R sin α = 1·25[
P

Eb

R′R

R′ − R
]1/2, (5)

where:
b = The axial width of the revolute joint (Figure 3).
P = F cos θ0 = The radial component of load F .
α = Half of the maximum angular contact between the two cylinders (Figure 4).

When the material of the two surfaces are not the same, with different modules of elasticity
of E1, E2, and Poisson ratios ν1, ν2, then E in the above equation is replaced by 1·82E1E2/((1 −
ν2

2)E1 + (1 − ν2
1)E2) [10].
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Figure 4: The revolute pin joint under load F .

We used Equation (3) for obtaining the radial stress distribution. It is assumed that the Coulomb
frictional law can be used for obtaining the tangential stress distribution between two cylindrical
surfaces of the joint.

3.2 Equilibrium analysis

Given the stress distributions on cylindrical surfaces, it is possible to write equilibrium equations
of forces and moments. The components of forces acting on an infinitesimal area of contact bRdθ
(Figure 4) are:

∑

~dF = σrbRdθ[(µ cos θ − sin θ)̂i + (cos θ + µ sin θ)̂j], (6)

where σr = σmax

√

1 − R2

a2 sin2(θ − θ0) is obtained from Equation (3).
By integrating over the contact area, equilibrium equations of forces along x, y, and moment

around z axis (Figure 4) could be written as:

∑

Fx =

∫ θ0+α

θ0−α

∑

~dF · î =

∫ θ0+α

θ0−α
bRσmax(µ cos θ − sin θ)

√

1 − R2

a2
sin2(θ − θ0)dθ = 0, (7)

∑

Fy =

∫ θ0+α

θ0−α

∑

~dF · ĵ =

∫ θ0+α

θ0−α
bRσmax(µ sin θ + cos θ)

√

1 − R2

a2
sin2(θ − θ0)dθ = F, (8)

∑

Mo =

∫ θ0+α

θ0−α

[

~R ×
∑

~dF
]

· k̂ =

∫ θ0+α

θ0−α
µbR2σmax

√

1 − R2

a2
sin2(θ − θ0)dθ = F l, (9)

where:
θ0= the angle where maximum radial stress occurs (Figure 4).
~R = R(sin θ̂i − cos θ̂j)
l = the distance between force F and y axis (Figure 4).

By substituting for: a = R sin α, u = θ − θ0, and the trigonometric expansion of Equations (7)
and (8), can be solved and provide the following equations:

tan θ0 = µ, (10)
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F =
πb.R

2
σmax(1 + µ2)1/2 sin α. (11)

On the other hand, equation (9) can not be solved analytically since it is an elliptic integral. There
are various approaches of finding the solution for (9).

I) Numerical Integration: This method could be applied by using numerical integration algo-
rithms to each individual case, however it is computationally intensive, and time consuming. This
is true when the solution is needed for dynamic cases (such as the endoscopic flexible extenders),
where load and other parameters are constantly changing.

II) Tabulated Values: There are tables for different kinds of elliptic integrals that could be
used[9] to solve equation (9). Although not practical, they are used in this paper (Table 1) to
verify the results of the next method (Expansion Series), and based on that, develop a convenient
approximate solution.

III) Expansion Series: Approximation is possible by obtaining series expansion of the equation
(9). For this purpose first let K = R/a and u = θ − θ0 to get equation (9) in the following form:

F l

µbR2σmax

=
∫ α

−α

√
1 − K2 sin u2du = 2E(α, K), (12)

where E(α, K) is defined as the normal elliptic integral of the second kind[9], that could be repre-
sented with expansion series if K < 1. However in our case K ≥ 1 since: K = R/a, and a = R sin α
, so K = 1/ sin α, since 1 ≥ sin α ≥ 0 which results in: K ≥ 1. Therefore, it is necessary to use
Reciprocal Modulus Transformation[9] of E(α, K) as :

E(α, K) = [E(β, k) − (1 − k2)F(β, k)]/k
Where k = 1/K = sin α, and β = sin−1(K sin α) = sin−1(1) = π/2. Also F(β, k) is the normal

elliptic integral of the first kind. Then Equation (12) is transformed to:

F l

µbR2σmax
= 2E(α, K) = 2[E(π/2, k)− (1 − k2)F(π/2, k)]/k. (13)

Now by substituting (11) in (13), we can further reduce the expansion as:

l

R
=

4E(α, K)

π sin α

µ√
1 + µ2

= Cα
µ√

1 + µ2
, (14)

where

Cα =
4E(α, K)

π sin α
=

4

π
[E(π/2, k) − (1 − k2)F(π/2, k)]/k2. (15)

The expansion series of E , and F [9] can be used to obtain an expansion series for Cα by applying
them to Equation (15) as the followings:

E(π/2, k) = π
2

[

1 − 1

4
k2 − 3

64
k4 − 5

256
k6 − 175

16384
k8 − .....

]

,

F(π/2, k) = π
2

[

1 + 1

4
k2 + 9

64
k4 + 25

256
k6 + 1225

16384
k8 + .....

]

,

Cα = 1 + 1

8
k2 + 3

64
k4 + 25

1024
k6 + 245

16384
k8 + ........ .

(16)

On the other hand, the tabulated values of E and F [9] are used, and the following values of Cα

based on equation (15) are calculated (Table 1) and plotted versus α in Figure 5 (shown by small
circles).

6



α k = sin α E(π/2, k) F(π/2, k) 2E(α, K) Cα

0 0·0 1·57080 1·570796 0·0000 1·000
5 0·087 1·567809 1·573792 0·1370 1·001
15 0·259 1·544150 1·598142 0·4100 1·008
30 0·500 1·467462 1·685750 0·8126 1·035
45 0·707 1·350644 1·854075 1·1981 1·079
60 0·866 1·211056 2·156516 1·5517 1·141
75 0·966 1·076405 2·768063 1·8448 1·216
90 1·000 1·00000 ∞ 2·0000 1·273

Table 1: The values of Cα for different contact angles α .
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Figure 5: Cα vs. α for revolute pin joints.
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Figure 6: l/R vs. µ for revolute pin joints.

Comparing the results of these two approaches shows that, the series (16) converges to the
final values of Cα (Table 1) very slowly as the number of elements in the series are increased. For
example, even the summation of the first five elements of the series results in 5% deviation for large
values of α (shown by the dashed line A, in Figure 5) from the tabulated values.

IV) Curve Fitting : By curve fitting techniques (to the data points of Cα from Table 1), it
is possible to obtain functions with better accuracy compared to the results of expansion series
with limited number of elements. For example, by knowing the type of polynomial obtained from
previous section (i.e. equation 16), the function Cα = 1 + Ak2 + Bk4 + Ck6 + Dk8 could be solved
by least square method for the tabulated values of Cα (from Table 1), to obtain the coefficients:
A, B, C, and D. This results in:

Cα = 1 + 0 · 0477k2 + 0 · 5744k4 − 1 · 051k6 + 0 · 6982k8. (17)

The above equation has less than 1% deviation from the values of Cα over the whole range of
α (shown by the solid line B, in Figure 5). This is a reasonable level of accuracy for most practical
applications, but other optimal curve fitting techniques might even achieve higher accuracies.

Now by having the equation of Cα, the final frictional moment of the revolute pin joint can be
written as :

M = F × l = F × R(1 + 0 · 0477 sin2 α + 0 · 5744 sin4 α − 1 · 051 sin6 α + 0 · 6982 sin8 α)
µ

√

1 + µ2
, (18)

where α can be obtained from (5) and (10) as:

α = sin−1

[

(
2 · 31F

Eb
√

1 + µ2
.

R′/R

R′ − R
)1/2

]

.

From the above equation it is evident that the value of M for some specific force F depends only
on the parameter l. So the ratio l/R (= M/FR) can be considered as a dimension-less index that
represents the maximum moment capacity of the joint, regardless of the revolute joints dimensions.

The quantity l/R from Equation (14) is plotted for different values of µ and α in Figure 6. In this
plot, the curve corresponding to α = 0 represents rigid joint model (since, for α = 0 : Cα = 1, and
Equation (14) converts to Equation (1), and comparing it to the full contact case (where α = 90◦),
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Figure 7: The stress distribution between two spherical surfaces.

Equation (1) has a deviation of 21% from Equation (18). This could result in the same amount of
error, if equation (1) is used for a full contact case. Actually, the straight line approximation l/R = µ
provides much better approximation for near full contact conditions than Equation (1). However,
there is no need for approximation anymore, the new model (18) provides accurate estimation of
M for any condition of friction and contact angle.

4 Spherical socket-ball joints

In this section, similar procedure as Section 3 is applied to spherical socket-ball joints. First, the
stress distribution on the contact area of spherical joint is studied, then by applying Coulomb
friction law at the contact area the equilibrium analysis is carried out.

4.1 The radial stress distribution

Similar to the cylindrical case (Equation 3), the radial contact stress σr between the two spherical
surfaces of radiuses R and R′ due to deformation are known[8][10] to be an elliptical distribution
as well. However, the elliptic distribution is along two axis(i.e. X, and Y axis) :

σr = σmax

√

1 − x2

a2
− y2

a2
. (19)

When the material of the two surfaces are the same, with the module of elasticity E and Poisson
ratio ν ≈ 0·3 (true for most alloys), the maximum radial stress σmax at the center of contact region
is:

σmax = 0·389[PE2(
R − R′

RR′
)2]1/3, (20)

and the radius of contact region (= a, Figure 7) can be obtained by :

a = R sin α = 1·11[
P

E

RR′

R − R′
]1/3, (21)

where:
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Figure 8: The spherical socket ball joint under load F .

P = Fcosθ0 = The radial component of F .
α = Half of the maximum contact angle between the two spheres.

However, if the material of the two surfaces are not the same, then E in the above equation has
to be changed with 1·82E1E2/((1 − ν2

2)E1 + (1 − ν2
1)E2) as described in Section 3.1.

4.2 Equilibrium analysis

Based on the stress distribution on the spherical surface, the equilibrium equations of forces and
moments can be obtained. First, by considering forces acting on an infinitesimal area, then inte-
grating it over the whole contact area. The components of forces(normal and frictional tangent
forces) acting on an infinitesimal area of contact R2dφ dθ (Figure 8) are:

∑

~dF = σrR
2

[

(− cos φ sin θ̂i + cos θ cos φ̂j − sin φk̂) + µ(sin θ̂j + cos θ̂i)
]

dφdθ. (22)

By integrating over the contact area, equilibrium equations of forces along x, y, and moment
around z axis (Figure 6) could be written as:

∑

~Fx =

∫ θ0+α

θ0−α

∫ +α′

−α′

∑

~dF · î =

∫ θ0+α

θ0−α

∫ +α′

−α′

R2σr(µ cos θ − cos φ sin θ)dφdθ = 0, (23)

∑

~Fy =

∫ θ0+α

θ0−α

∫ +α′

−α′

∑

~dF · ĵ =

∫ θ0+α

θ0−α

∫ +α′

−α′

R2σr(cos θ cos φ + µ sin θ)dφdθ = F, (24)

∑

~Mz =

∫ θ0+α

θ0−α

∫ +α′

−α′

[

~R ×
∑

~dF
]

· k̂ =

∫ θ0+α

θ0−α

∫ +α′

−α′

µR2σr cos φdφdθ = F l, (25)

where,

σr = σmax

√

1 − [R
a

sin(θ − θ0)]2 − [R
a

sin φ]2,
~R = R(cos φ sin θ̂i − cos φ cos θ̂j + sin φk̂),
l = the distance between force F and y axis (Figure 8),
θ0 = The angular position of center of the contact area(Figure 8),

α′ = sin−1
√

sin2 α − sin2(θ − θ0).

After expansion of the Equations (23) and (24), they convert into elliptic integral forms which
do not have analytical solutions. However, it is possible numerically to verify that the equation
(23) leads to the same equation: tan θ0 = µ, for different values of µ and α. Now, by knowing
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θ0 = tan−1 µ, it is possible to find the radial component of force F (i.e. P = F cos θ0), which drives
the two spherical surfaces into each other radially, and is the same as force P in Equations (20) and
(21). As a result we can have:

P = F cos θ0 = F/
√

1 + µ2.

On the other hand, by multiplying Equation (20) by square of equation (21), we may obtain a
relation between σmax and P as :

σmax(R sin α)2 = 0·388(1·11)2

[

P 3(
E∆RR

ER∆R
)2

]1/3

= 0388(1·11)2P.

Replacing P = F/
√

1 + µ2 in the above equation, a relationship between F , and σmax can be
obtained without solving Equation (24) as followings :

σmax =
0·388(1·11)2

R2 sin2 α
√

1 + µ2
F. (26)

Now by substituting σmax given in (26) in the trigonometric form of Equation (19), we can write

σr = σmax

√

1 − [
R

a
sin(θ − θ0)]2 − [

R

a
sinφ]2 =

0·388(1·11)2

R2 sin2 α
√

1 + µ2
F

√

1 − [
R

a
sin(θ − θ0)]2 − [

R

a
sinφ]2,

which provides us with σr, which can be used in equation (25). This makes it possible to integrate
Equation (25), and obtain:

πµ
0·388(1·11)2

R2 sin2 α
√

1 + µ2
FR3

[

cos α − α
cos 2α

sin α

]

= F l,

after simplification it leads to:

l

R
= 0·75

[

cos α

sin2 α
− α

cos 2α

sin3 α

]

µ√
1 + µ2

. (27)

Equation (27) has the same basic structure as Equation (14) in the case of revolute pin joint(i.e.
l/R = Cαµ/

√
1 + µ2). However, Cα in this case is

Cα = 0·75
[

cos α

sin2 α
− α

cos 2α

sin3 α

]

. (28)

Cα is plotted versus α in Figure 9, which can be interpreted as the deviation of elastic joint (as a
more realistic assumption), compared to the absolute rigid joint(as an ideal case assumption, where
Cα = 1).

Now, by use of Equation (28), the frictional moment of the spherical joint would be:

M = F × l =
3

4
F × R

[

cos α

sin2 α
− α

cos 2α

sin3 α

]

µ√
1 + µ2

, (29)

where, α can be obtained from (21) as α = sin−1

[

( 1·367F

ER∆R
√

1+µ2
)1/3

]

Same as previous section, l/R is the dimensionless parameter that represents the frictional
moment capacity (M), of the spherical socket ball joint regardless of its size. Hence, l/R of Equation
(27) is plotted for different values of µ and α as shown in Figure 10. In this plot, the curve
corresponding to α = 0, represents the rigid joint model, and comparing to full contact case (where
α = 90◦), Equation (1) has a deviation of about 15%. This means, equation (1) would result 15%
error, if used when the joint is in full contact.
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Figure 9: Cα vs. α for spherical socket ball joints.
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Figure 10: l/R vs. µ for spherical socket ball joints.
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5 Discussions

Based on the previous analysis, we have presented the mathematical models (Equations (18), and
(29)) that can predict the frictional moment M of the joints, as a function of the contact angle α,
and µ. However, to apply these models effectively, it is important to know, under what range of
loads on the joint, the value of α(and subsequently Cα, and M) is affected most. To clarify this in
more details, the following questions must be addressed and discussed:

I) In what minimal range of loads, does the joint still behaves as a rigid joint(i.e. α ≈ 0, and
Cα ≈ 1)?

II) In what intermediate range of loads, does the joint have partial contact as an elastic joint(i.e.
0 < α < 90◦)?

III) In what maximal range of loads, does the joint have full contact as an elastic joint(i.e. α = 90◦)?

In order to answer the above questions, first we have to find the maximum load capacity of
the joint Pmax, as an upper bound limit, as well as a relative scale of comparison for other smaller
loads(as the ratio P/Pmax). The reason that P has been used here instead of the load force F is
that, the radial load P (= F cos θ0) is the only contributing component of load F which is used in
the computation of σmaxin Equations (4) and (20).

Let us first consider the revolute pin joints. Based on the strength of material(as the design
criteria for maximum loading of joints), the maximum radial force Pmax that can be exerted on the
joint must not induce larger stresses than the allowable stress σy

S
, where σy is the yield stress of the

joint’s material and S is the safety factor of design. Therefore σmax in equation (4) can be replaced
by σy

S
in order to find the maximum value of P defined as Pmax. As a result :

Pmax =
5·72b(Rσy)

2

E∆RS2
(30)

Where ∆R = R′ − R, and R′ ' R is assumed.
On the other hand, the full contact between the two cylindrical surfaces of the joint happens

when the contact angle is 180◦(i.e. α = 90◦ , Figure 4). Here, Pfc is defined as the minimum radial
force required to cause full contact in the joint (i.e. α = 90◦). A relation for Pfc can be reached by
substituting α = 90◦ in Equation (5):

a = R sin(90◦) = 1·52[
Pf.c.

Eb
RR′

∆R
]1/2 And by assuming R′ ' R, Pfc would be:

Pfc ≥
Eb∆R

2·31
. (31)

Now by dividing (31) by (30) and for revolute pin joints we can obtain the ratio of Pfc and Pmax

as :

1 ≥ Pfc

Pmax
≥ 0·076

[

S
∆R

R

E

σy

]2

. (32)

The same can be done for spherical socket-ball joints, that yields the following:

1 ≥ Pfc

Pmax
≥ 0·043

[

S
∆R

R

E

σy

]3

. (33)

As an example, let us look at a steel joint with normal design parameters such as: σy =
500MPa, E = 210GPa, R = 10mm, ∆R = 0·01mm, and the design safety factor of S=2·5 . Table 2
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Type Revolute Pin Joint Spherical Socket-Ball Joint

Contact Low partial Full Low partial Full
Cα 1·0 – 1·01 1·01 – 1·27 1·273 = 4

π
1·0 – 1·01 1·01 – 1·17 1·178 = 3π

8

α 0 – 20 21 – 89 90 0 – 18 19 – 89 90
P

Pmax
0 – 0·01 0·01 – 0·08 0·08 – 1·0 0 – 0·001 0·001 – 0·05 0·05 – 1·0

Table 2: The typical calculated values of Cα, α, and P
Pmax

.

shows the typical calculated values for α, Cα, and P/Pmax for the revolute and spherical cases. In
this table, low contact refers to the narrow range of α that corresponds to the range of 1 ≤ Cα ≤ 1·01
. In other words, the low contact range represents the range of α(and the corresponding values of
P/Pmax), that Cα ' 1, and the joint is still behaving rigid under the very light load. The partial
contact is defined as the range that contact angle α is more than low contact range, but less than
full contact(that α = 90◦).

For revolute pin joints, from the above example it is apparent that, in order the assumption of
rigid joint to be accurate (Cα ' 1) then P should not exceed 1% (and 0·1%, in the case of spherical
joint) of the maximum allowable load Pmax.

On the other hand, in the full contact columns, when the load P exceeds 8% and 5% of Pmax,
then Cα is equal to 1·273, and 1·178 for revolute and spherical joints respectively. This is more than
90% of the range of allowable load Pmax. Therefore assuming Cα = 1·273 (for revolute pin joints)
and 1.178 (for spherical socket-ball) in the case of unknown loads(or when P is generally larger
than 5 − 8% of Pmax), will result more accurate model than using the conventional model (2).

6 Concluding remarks

The elastic property of joints has led this study to the general formulation of the Coulomb frictional
moment in the revolute pin joints or socket-ball joints as: M = Cα

F×R×µ√
1+µ2

Where the value of Cα can generally be determined in the following three cases:

Case 1: For low contact angles(e.g. α ≤ 20◦), then Cα ' 1. This corresponds to very light loads
(e.g. about or less than 1% of joints allowable loads, Table 2), that the joints still acts as a
rigid body.

Case 2: For partial contact(e.g. 20◦ < α ≤ 90◦) Cα can be calculated by the closed form Equations
(17), and (28) for the two cases.

Case 3: For full contact (that α = 90◦) Cα is equal to 1·273(= 4/π), and 1·178(= 3π/8) for the
revolute and spherical joints, respectively.

Case 3 is the dominant case of joints operation (more than 90% of the designed load range), that
could be used for general estimations when the exact magnitude of load P , or contact angle α are
unknown, but the loads are high enough to cause full contact or near full contact(e.g. P

Pmax
> 008,

Table 2).
In comparison to the conventional friction model( where Cα = 1 ), the new model with the

value of Cα obtained according to case 2 or 3 can prevent up to 21% and 15% error in the Coulomb
frictional moment estimation of pin and socket-ball joints respectively. This higher accuracy is
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specially important for better control, and dynamic modeling of multi-body systems with several
joints in series(with accumulative error). One of such cases is the estimation of the frictional
moments in the endoscopic flexible stems for locking and motion control of the extenders.
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