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Abstract
This paper presents a model describing the effects of

a human driver on the tipping stability of a powered
wheelchair.  The tipping stability is measured by the
angle of tilt required to induce a loss of contact between
any of the wheels of the wheelchair and the ground.
Specifically, the effect of moving the centre of gravity of
the human driver relative to that of the wheelchair in a
controlled manner is shown to improve the tipping
stability.  Expressions are derived relating the static and
dynamic tipping criteria to the position and relative mass
of the human.  A simple controller is used to demonstrate
that this strategy serves to improve tipping stability.

1. Introduction

Independence is one of the key factors which
contribute to quality of life.  According to [1], mobility
along with communication play a critical role in
maintaining independence, and the degree of mobility is
directly related to one’s level of independence.  Powered
wheelchairs are the primary means by which many
physically disabled people extend the limits of their
mobility both in and out of their home and work
environments.  These limits, though, are circumscribed
by the range of places the wheelchairs can safely take the
user.  Common physical limits to mobility include
sidewalk curbs, stairs, and sloped roads.  In many such
situations, the limitation is not imposed by the ability of
the wheelchair itself to negotiate the terrain so much as
by the safety and comfort of the driver as the wheelchair
changes attitude in traversing the terrain.

Powered wheelchairs can be thought of as small
vehicles in which the driver sits (Figure 1).  Like an
automobile, the powered wheelchair possesses (usually)
four wheels, motors, and a battery pack.  The driver
steers the wheelchair through a control interface mounted
either on the armrest or headrest.  Unlike the common
car, though, the driver makes up a significant fraction of

the total loaded vehicle weight.  An adult might weigh
65 kg or more.  Together with the seat (~18 kg) which
the driver is usually belted into, about half of the total
weight of a typical loaded powered wheelchair (occupant
plus wheelchair) is composed of or directly attached to
the driver.  For ergonomic reasons, the driver must be
kept a reasonable height off the ground, raising the
person’s centre of gravity (CoG) and subsequently the
CoG of the loaded wheelchair.  At the same time, the
footprint of the wheelchair must be kept small enough to
allow for easy maneuverability (e.g., egress through
doorways).  The result is a compromise between size and
maneuverability and structural stability.

This paper deals primarily with powered
wheelchairs, although some of the results may be more
generally applicable.

Data gathered by [2] suggests that tipping is one of
the biggest concerns for wheelchair users in motion.  As
defined in the ISO standards on wheelchair stability
[3][4], tipping stability is associated with the loss of
driver control over the wheelchair’s behaviour inherent in
the lifting of one or more wheels, as it is through the
wheels of the vehicle that the wheelchair is steered and
driven.
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Figure 1: Powered wheelchair nomenclature.

Driver

Driver +
Seat
CoGSeat

Chassis
CoG

Chassis



2

Knowing when one or more wheels lose contact with
the ground is important because the wheels are necessary
for control of the direction of the wheelchair’s direction,
especially in turning on a slope, as pointed out in [5].
Furthermore, the loss of even one contact point out of the
four which most powered wheelchairs have can cut down
the tipping stability drastically by reducing the effective
footprint covered by the wheelchair, as [6] has noted.

In the static stability test [3], a fully-loaded
wheelchair (including a test dummy as the driver) is
placed upon a tiltable platform.  The wheelchair is gently
tilted in several different directions and the stability limit
recorded for each.  The stability limit for a particular
configuration (e.g., locked brakes, wheelchair facing
downhill) is defined as the tilt angle at which one or
more wheels of the wheelchair slide along the platform
due to insufficient friction between the wheel and the test
plane or where the wheelchair tips over.

The dynamic stability test [4] is similar, with the
exception being that the wheelchair is accelerated and
braked going up and down, respectively, a tilted surface.
The stability limit is again defined by the tilt angle at
which the wheels are observed to lift off the surface in
braking or accelerating or where the wheelchair tips over.

Another related issue is the loss of upright posture,
which can have negative consequences for the driver
ranging from discomfort to loss of control over the
wheelchair.  People who use powered wheelchairs do so
because they do not have the requisite upper body
strength or endurance to use a manual wheelchair, and
hence may not to be able to bring their bodies back to an
upright position if their own position in their seats
changes as a result of an attitudinal change in the
wheelchair chassis. [7]  Additionally, although most
wheelchair drivers will have seatbelts and hence are in
little danger of sliding out of their seats, a tilted seat will
result in uncomfortable and potentially physiologically
harmful shear forces at the bearing skin surfaces.  In fact,
devices such as [8] have been designed specifically to
combat such debilitating effects.

Logically, the ability to shift the driver relative to
the wheelchair chassis should aid in maintaining
structural stability, by changing the vehicle geometry to
compensate for the terrain.  Indeed, wheelchairs such as
[9] which allow for such a function are already in
existence.  Automatic compensation, however, has
primarily been the domain of larger vehicles such as [10].
Other authors [12]-[15] have suggested that such a shift
can have large effects on the stability of the wheelchair,
in the case of manual wheelchairs.  The next sections
present a simple model for loaded wheelchairs and
present some criteria for evaluating tipping stability
based on measured geometry.  Lastly, a mechanism for
effecting the movement of the driver and seat is
presented.

2. Modeling

In this paper, some of the conditions which lead to
tipping, as well as some simplified models which can be
used to predict tipping, will be developed.  The primary
model which will be used is a two-dimensional one where
a 65 kg human is sitting on a Fortress Scientific electric
wheelchair, as pictured in Figure 1.  The masses of the
various portions of the wheelchair were derived from
experimental measurements.  The mass distribution
model of the human was supplied with the two-
dimensional mechanical simulation software [16], which
is shown to be substantially the same as [17].

Because the criteria used to evaluate tipping stability
[3][4] deal with motion and structural stability in a single
direction at a time, the models presented in this paper are
fairly simple two-dimensional ones.  Given decoupling of
pitch (forward/back rotation) and roll (rotation left/right),
these two-dimensional models may be applied to certain
three-dimensional cases, such as the ISO tip stability
testing procedures [3][4].

2.1 Single-Mass Model

The loaded wheelchair can be modeled as a single
mass M, with a moment of inertia Icm about its centre of
mass.  The forces acting on M are the gravitational force

Mg
v

, the surface normal reaction forces 
v
N1 and 

v
N2 , and

the frictional forces 
v

Ff1  and 
v

Ff 2  with coefficients of

friction µ1 and µ2.
The displacement vector 

v
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while the vector
v
r12  from the downhill contact point to the

uphill contact is similarly given by:
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Figure 2: Single-Mass Wheelchair Model
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The model shown in Figure 2 serves equally well for
analysis of transverse (side-slope) and longitudinal
(down-slope) problems.  In this model, there are only two
points of contact with the slope at O and A, each
corresponding to one pair of wheels.  (e.g., in a
longitudinal problem, the points of contact are the front
and back pairs of wheels.)

We can disregard any moment of inertia of the
wheels, as the wheels tend to be quite small on powered
wheelchairs and turn relatively slowly, and hence possess
a negligible moment as compared with the rest of the
system.

2.2 Two-Mass Model

An extension of the single-mass model separates the
driver and seat from the chassis (Figure 3).  In many
powered wheelchairs, the seat is customized or capable of
being customized to suit the needs of the user, separate
from the chassis which contains the motors, wheels, and
batteries.  It is a practical approach to insert a mechanism
between the seat and the chassis in order to position the
seat and driver for maximal tipping stability.

In the two-mass model, the mass of any linkages
which connect the driver to the chassis mass has been
disregarded as negligible compared to the mass of the rest
of the system.

For a given configuration of the two masses, we can
calculate a single-mass equivalent using:

( )v v v v v v
r

m

M
r

m

M
r r r

m

M
rcm

c
c

d
c c d c

d
c d= + + = +→ → (2.a)

M m m= +c d (2.b)

which gives us the centre of mass for the combined
system.

The distribution of mass in the seated human locates

the CoG of the combined driver and seat system as
located in Figure 1, at the ventral surface of the lower
abdomen. (Exact position depends on the individual
driver.)

2.3 Equivalence of Tilt and Acceleration in Tipping
Stability

Consider the case of a wheelchair accelerating to the
left on a level plane, as shown in Figure 4.  A reference
frame attached to the wheelchair would be non-inertial
due to the acceleration.  An inertial frame can be
constructed by the addition of a fictitious external force of
magnitude Mx&&  acting in the opposite direction of the
acceleration.  The resulting configuration, pictured on the
right side of Figure 4, is analogous to the static tilted
models with a slightly larger force 

v
F  replacing the

gravitational force Mg
v

 from the model of  Figure 2.  The

incline angle θ θo a= , the included angle  between the

vectors Mg
v

 and Mx&& .  It is not difficult to see by

inspection that acceleration on a slope θ  can be modeled
with a mass on an incline with an angle equal to the sum
of θ a  and θ .  Thus, the analysis of the wheelchair on an

incline presented here can be applied to more general
situations.

As an example, we can obtain the side tipping, or
roll, stability, by considering the addition of centripetal
acceleration to the wheelchair.  To model this
acceleration using the static model, we can add a
centrifugal pseudo-force in the x-direction to the
gravitational force pulling down on the system, in similar
fashion to [6], and considering this system to be quasi-
static.  This new setup can then be used to calculate roll
stability.  In a three-dimensional model which would
extrapolate from this work, it is essential that
consideration be taken of roll as well as pitch stability.

3. Static Tipping Stability

Although the tipping stability of the wheelchair is
measured by the angle of tilt required to actually tip the
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Figure 3: Two-Mass Wheelchair Model
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wheelchair, it can also be applied to more general
situations as a margin to unrecoverable tipping.
Recoverable tipping of the wheelchair ends up with the
wheelchair returning to its original position and
orientation, while unrecoverable tipping leads to rather
catastrophic results.

3.1 Static Tipping Criterion

As a first step in calculating the tipping stability
limits of the model, in a derivation similar to [12],
consider the sums of forces and moments in the model
shown in Figure 2.  In the static situation, these sums will

be identical to 
v

0 .  Assuming that l1 < l = l1 + l2 (l, the
distance between the two contact points, is fixed for a
given system configuration.) and that θ ≥ 0, the point of

rotation will be about the downhill contact point O.  
v
N1 ,

v

Ff1 , and 
v

Ff 2  act through O, and hence do not contribute

a moment in equation (4).
v v v v
0 1 2= + −N N Mg (3)

v v v v v
0 12 2= × + ×( ) ( )r Mg r Ncm (4)

Equation (3) can be rewritten in terms of its
components.  Specifically, we look at the component of
force along the direction normal to the ramp surface:

0 1 2= + −
v v v
N N Mgcosθ (5)

Equation (4) will have a z-component only, perpendicular
to the two-dimensional model plane:

( )0 1 1 2 2= − + − +Mg l h l l N( cos sin )θ θ
v

(6)

At the limit of stability, 
v v
N2 0=  as point A just lifts

away from the ground, so equation (6) simplifies into:

tanθ crit = l
h

1 (7)

Equation (7) gives the tipping stability limit, the
angle qcrit at which the wheelchair first starts to tip over.
As pointed out in [6], this static tipping stability criterion
can also be applied to roll stability while turning, by
adding an extra centrifugal force component applied at
the CoG, which will contribute additional tipping
moment.

3.2 Relationship Between System Centre of Gravity
and Tipping Stability

For a given configuration of the single-mass model,
the location of the system CoG is fixed.  With the two-
mass model, though, we are able to move the system CoG
by moving system D relative to system C.  Because the
mass of the driver-seat system is roughly equivalent to
that of the chassis, equation (2.a) suggests that for any
given movement of system D relative to system C, the
system CoG will move half as much in the same

direction.  We will make use of this property in order to
actively shift the system CoG to maximize tipping
stability by maximizing the zone of stability.

It is apparent from equation (7) that an increased
height h of the CoG above the ground will lower qcrit and
hence decrease the tipping stability, which is an
intuitively obvious result.  Furthermore, increasing the
horizontal displacement l1 of the CoG seems to increase
the qcrit.  However, one cannot increase l1 without bound.

For l1 < l, the wheelchair retains tipping stability for
the one-sided zone of stability θ ∈ [0, θcrit].  If one makes
l1 > l, though (forcing relative displacement l2 negative),
the region of stability flips around to [θcrit, π/2], which is
not generally desirable.  This fits with simple physics and
the observations of [6] that the CoG must remain within
the footprint formed by the projection of the bounded area
between the ground contact points onto the horizontal
plane.

Because l = l1 + l2, increasing the system l1 by
moving mass D decreases the system l2.  It is possible to
calculate a tipping stability criterion for the uphill side,
which will give us a two-sided zone of stability
θ ∈ [-θcrit2, θcrit1] where

tan( )θ θπ
crit2 crit1= − = −l l

h
1

2 (8)

as long as l1 < l.  The total zone of stability will be given
by:

θ θ π
crit1 crit2+ = 2 (9)

For a given chassis tilt angle θc, the optimal stability
zone is chosen such that θc is equidistant from the two
stability limit angles.  This choice will be given by
choosing the parameters such that:

( )θ θ θ θ π
c crit1 crit2 crit1= − = −1

2 4 (10)

which will center the system CoG inside the wheelchair’s
footprint.

4. Formulation of Dynamic Tipping Stability

In the dynamic stability test of [4], the wheelchair is
braked suddenly going downhill.  In the worst case, the
wheelchair comes to a sudden halt rather than
decelerating smoothly, similar to impact with a low
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Figure 5: Wheelchair plastic collision
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obstacle going downhill, as in Figure 5.  In such a case,
the rear wheels of the wheelchair will definitely leave the
ramp.  We will determine the response to this impulse
input by looking at the extent to which the wheelchair
tips and the conditions required for such tipping.

In this section, the following definitions apply:

T total kinetic energy
V potential energy
v translational speed
ω rotational speed
y height of CoG in world coordinates

Subscript 0 refers to the situation immediately prior
to impact, subscript 1 refers to the situation immediately
after impact, and subscript 2 refers to the situation some
time after impact.

4.1 Threshold Unrecoverable Tipping Speed

Consider a wheelchair moving downhill with a
translational speed v0 and rotational speed w0=0 when
the brakes are applied.  In such a case, we can find the
speeds v1 and ω1 immediately post-impact by summing
the system momenta before and after the impact [18].  As
this is a plastic collision, we apply the principle of
conservation of angular momentum:

( ) ( )Mv h Mv r I0 1 1= +v
cm cmω (11)

Because the wheelchair starts rotating about the
point of impact, we consider that v r1 1= v

cm ω .

Combining this expression with equation (11) leads to:

( )Mv h I M r0
2= +cm cm

v ω (12)

which gives us an expression for the total kinetic energy
post-impact:

( )
T Mv I

I M r

1
1
2 1

2 1
2 1

2

1
2

2
1
2

= +

= +

cm

cm cm

ω

ωv (13)

Note that the wheelchair has lost some of its kinetic
energy to the plastic collision, so that in general T1 < T0.
We will comment more on this fact in the next section.

We can calculate the conditions required to induce
unrecoverable tipping of the wheelchair, where the
wheelchair’s tilt angle in world coordinates has reached
the limit of static stability θcrit with zero speed.  Tipping
of the wheelchair up to this point will be recoverable, as
the wheelchair will be statically stable even at maximum
tip, and hence recover its initial position and orientation.
If the initial kinetic energy is enough to push the
wheelchair past this point, then the wheelchair will have
no static stability.

It is desirable to maximize this threshold, so that for
any given braking situation, one will have the maximum
possible margin to unrecoverable tipping.

Applying conservation of energy post-impact,

T V T V1 1 2 2+ = + (14)

where V1=Mgy1 and V1=Mgy2.  y1=y0 because the
wheelchair hasn’t moved yet immediately after the
impact.  In unrecoverable tipping, the wheelchair must
pass through the position where y r2 = v

cm .  Since we are

trying to find the minimum speed which will lead to
unrecoverable tipping, we will consider the case where
T2=0, i.e., where the wheelchair has just enough kinetic
energy left after impact to raise the system to the
threshold of unrecoverable tipping.  Solving equation
(14) for T1 and substituting the expressions from
equations (12) and (13) yields:

( ) ( )T
Mv h

I Mr
Mg y y1

1
2 0

2

2 2 0=
+

= −
cm cm

(15)

The geometry in Figure 5 suggests that:

( )
( )

y r

r

0 2= + −

= −

v

v

cm crit

cm crit

sin

cos

θ θ

θ θ

π

(16)

At the threshold of tipping, y = rcm.  Substituting into
equation (15) along with equation (16), and solving for
vthresh = v0 gives us:

( ) ( )( )v
g r

Mh
I M rthresh

cm
cm cm crit= + − −

2
12

2
v

v
cosθ θ (17)

Equation (17) is an expression for the maximum
speed the wheelchair can be travelling at when the brakes
are applied past which the wheelchair will tip completely
over in an unrecoverable fashion.  As expected,
increasing the slope angle θ or the height of the system
CoG h will decrease vthresh.

The system moment of inertia Icm is related to the
moments of inertia Ic and Id of the two components of the
two-mass model through the parallel-axis theorem and
judicious application of equation (2):

I I I m r r m r r

I I
m m

m m
r

cm c d c cm c d cm d

c d
c d

c d
c d

= + + − + −

= + +
+ →

v v v v

v

2 2

2 (18)

The implication of equation (18) is that by increasing the
separation 

v
rc d→  of the two component masses, we can

increase Icm and hence the resistance of the wheelchair to
tipping.  Furthermore, we get a double effect on vthresh, as
increasing 

v
rc d→  will also increase 

v
rcm  in equation

(17).

4.2 Maximum Tip Criterion

Another criterion we can use is the maximum
amount of tip ∆y which is generated upon braking, which
is a measure of how much time the wheelchair’s wheels
spend off the ground and out of play as control surfaces
for the wheelchair.  It is desirable to minimize ∆y as
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decreasing the amount of time the wheelchair’s wheels
spends away from the grounds increases the control the
driver has over a given braking situation.  ∆y y y= −2 0 ,

so from equations (15) and (16):

( )

( )

∆y
Mv h

g I M r

T

g

h

I M r

=
+

=
+

0
2 2

2

0
2

2

2 cm cm

cm cm

v

v

(19)

Note that equation (19) is independent of the ramp
angle θ.  It is only the amount of kinetic energy on
impact which affects the height ∆y which the wheelchair
gains.

We can rewrite equation (19) in more usable terms if
we recall from the single-mass model that
v
r h lcm

2 2
1
2= + .  Applying this expression for 

v
rcm

2
 to

equation (19) we get the ratio of change in potential
energy DU at maximum tilt to kinetic energy on impact:

( )
∆U

T

Mh

I M r

I Ml

Mh

0

2

2

1
2

2

1

1

1

=
+

=
+ +









<

cm cm

cm

v

(20)

The ratio of equation (20) calculates the amount of
the kinetic energy originally available which is not
dissipated in the plastic collision, and hence the ratio is
always less than unity.  In the real world, the plastic
collision in this model could correspond to braking via
some dissipative friction process or to sudden stopping
when hitting some irregularity in the ground such as a
curb.  It is obviously of benefit to have as much kinetic
energy as possible dissipated in the braking process and
as little as possible transformed into potential energy in
raising the rear end of the wheelchair off the ground.

To decrease the ratio of equation (20), one notes that
increases in the system moment of inertia Icm and the

horizontal displacement of the system CoG (relative to
the baseline between the two ground contact points) l1
both have a desirable (decreasing) effect on the ratio,
while increasing the vertical displacement h has the
expected undesirable effect (increasing the ratio).  As Icm

will increase with increases in 
v
rc d→ , we can conclude

that in order to increase the wheelchair tipping stability,
we should increase 

v
rc d→  in such a manner as to increase

l1 and decrease or keep constant h, so the primary
adjustment is one of sliding the driver-seat system back-
and-forth.  It is still desirable, though, to have some
rotation of the driver-seat system in order to reduce shear
forces, as pointed out in section 1.

5. Effect of Active Control on Stability

According to [17], approximately half of the mass in
humans (mean 56.5% percentage by weight among the
population sampled) is located in the torso minus the
limbs.  As it is the torso which is secured into the seat, it
is fairly safe to treat the driver and seat combination as
one rigid body.

A simple simulation which can accomplish the goals
of improving tipping stability and limiting shear forces
on the driver is shown in the simulation trace of Figure 6.
Here, the two-mass model has been used to demonstrate
active control over system centre of gravity.  Each
simulation has been captured at the point of maximum
system tilt.  The model at the left has the two masses
rigidly joined together, and is similar to the single-mass
model.  The model at the right has the second mass under
active control.

The mass of system D in this model is 40 kg, with a
moment of inertia of 27 kg m-2, while the mass of system
C is 48 kg, with a moment of inertia of 52 kg m-2.  The
CoG of system D is 3.275 m off the ground, while the
CoG of system C is 1.0 m off the ground.  The l1
parameter is 1.5 m.  In both cases, the systems were
started at a speed of 4.478 m/s, which is the threshold
tipping speed for the rigid system.

The active mechanism itself consists of a powered
rotational joint, similar to those found in manually-
controlled tiltable wheelchair seats, which pitches the
driver and seat back and forth.  Because the driver-seat
system CoG is 0.25m above this rotational joint, a
rotation in either direction will have the effect of
changing l1 and decreasing h.  Furthermore, the resulting
change in attitude of the driver-seat system can be used to
reduce shear forces if the alignment is such that the head
of the driver is always pointed away from the net force
vector on the system.  The net force vector is a vector sum
of gravitational pull combined with any forces
experienced as a result of acceleration.  The sensor used
is a damped pendulum mounted on the wheelchair

     

Figure 6: Simulation of Person on Wheelchair
with Active Leveling
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chassis.  This pendulum allows the direct measurement of
the net force vector on the wheelchair at any time.

Dynamically, the driver-seat system in this example
behaves like an inverted pendulum, and a simple PD
controller is used to control the tilt of the driver-seat
system to match the tilt angle of the pendulum.  As the
comparison in Figure 6 shows, this simple controller does
an adequate job of bringing the person to a gentle halt,
although it is easy to imagine a better mechanism for
absorbing the shock of stopping.

6. Summary and Conclusions

It is clear that the position of the human driver in a
loaded powered wheelchair can have a large effect on the
wheelchair’s tipping stability.  Expressions have been
developed which allow one to determine how much
margin a given wheelchair configuration has to tipping in
static, quasi-static, and dynamic situations.  Using these
expressions, one can evaluate existing wheelchair
configurations for their tipping stability as well as
determine appropriate goals for control algorithms which
actively shift the driver to maintain stability.

This work will contribute towards the development
of a pitch-roll CoG stability-compensated suspension for
use in wheelchairs, as the guideline for the envelope of
motion of the suspension system.  As the results of
section 5 demonstrate, their are great potential benefits to
utilizing such a suspension system.  Work on a large
motion active suspension system is currently in progress
at SFU.
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