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What are Lasers?

“"Now you know the difference between a moon beam and a laser beam!"



What are Lasers?
e Light Amplification by Stimulated Emission of Radiation
LASER
e Light emitted at very narrow wavelength bands (monochromatic)
e Light emitted in a directed beam
e Light is coherenent (in phase)
e Light often Polarized
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Why Study Lasers: Laser Applications
e Market $4.3 billion (2002) (just lasers)

Major areas:

e Market Divided in laser Diodes (56%) & Non diode lasers (44%)
e Materials Processing (28%)

e Medicine (10%)

¢ Entertainment/CD/DVD/Printers (~50%)

e Communications
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History of the Laser
¢ 1917: Einstein's paper showing "Stimulated Emission'
e 1957: MASER discovered: Townes & Schawlow
¢ 1960: First laser using Ruby rods: Maiman
first solid state laser
e 1961: gas laser
e 1962: GaAs semiconductor laser
e 1964: CO, laser
e 1972: Fiber optics really take off
e 1983: Laser CD introduced
e 1997: DVD laser video disks
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Fig. 3.4 Schematic of the ammonia-beam maser. Because the energy separation of the two
states (® and <) is small compared to the thermal energy of the system (E, — E_ « kT),
the energy levels are nearly equally populated (top insert). By passing the atoms through an
electric field gradient (quadrupole focuser), the higher-energy-state atoms (®) are directed
into a microwave cavity resonant at v = (E, — E_)/h. This physical separation creates a
population inversion in this two-level svstem (bottom insert).



World’s First Laser: Ruby Laser
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Fig. 1-6 Electromagnetic spectrum.
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Spontaneous and Stimulated Emission
e Consider 2 energy levels Ej (ground state) and E; (excited state)

e Photon can cause Stimulated Absorption E, to E;
e Excited state has some finite lifetime, T
(average time to change from state 1 to state 0)

e Spontaneous Emission of photon when transition occurs

e Randomly emitted photons when change back to level 0

¢ Passing photon of same A can cause "Stimulated Emission"
e Stimulated photon 1s emitted in phase with causal photon

e Stimulated emission the foundation of laser operation
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Fig. 3.1 Energy-state-transition diagram differentiating between stimulated absorption, spon-
tancous enussion, and stimulated emission. A black dot indicates the state of the atom beflore
and after the transition takes place. In the stimulated emission process, energy is added to
the stimulating wave during the transition; in the absorption process, energy is extracted

from the wave.



Main Requirements of the Laser
¢ Optical Resonator Cavity
e Laser Gain Medium in the Cavity
e Sufficient means of Excitation (called pumping)
eg. light, current, chemical reaction
e Population Inversion in the Gain Medium due to pumping

Laser Types
e Two main types depending on time operation
e Continuous Wave (CW)
e Power measured in Watts
¢ Pulsed operation
e Power measured in Jules/pulse
e Repeatition rate important for pulsed systems
e Ranges from ~ sub Hz to ~10 kHz
e Pulsed is easier, CW more useful
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Fig. 2.25 Schematic construction of a low-power gas laser such as the
helium-neon laser. The load resistor serves to limit the current once
the discharge has been initiated.




Laser Threshold

e With good Gain Medium in optical cavity can get lasing

but only if gain medium is excited enough
e Low pumping levels: mostly spontaneous emission
e At some pumping get population inversion in gain medium
¢ Beyond inversion get Threshold pumping for lasing

set by the losses 1n cavity
e Very sensitive to laser cavity condition

eg slight misalignment of mirrors threshold rises significantly
e At threshold gain in one pass = losses in cavity

Figure 3.5 Laser threshold phe-
nomenon—a laser does not gen-
erate significant optical output
until the pump energy passes a
threshold. At higher pump ener-
gies, the output power increases
rapidly. In practice, each laser
has limits on output, and even-
tually the output-input curve
Pump energy — bends over.
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General Laser Types
e Solid State Laser (solid rods): eg ruby
e Gas laser: eg He-Ne
e Dye Lasers
e Semiconductor Laser: GaAs laser diode
e Chemical Lasers
e Free Electron Lasers
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Fig 2 Range of wavelengths for current
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discovery, the secondis of commerciali-
sation (4).




Gas Lasers
e (Gas sealed within a tube with brewster windows
e clectric arc in tube causes glowing of gas

¢ glow indication of pumping
e Commonest type He-Ne
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Fig. 2.25 5Schematic construction of a low-power gas laser such as the
helium—neon laser. The load resistor serves to limit the current once
the discharge has been initiated.
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Fig. 2.27 Typical structure of a sealed mirror HeNe laser.




Gas Lasers
¢ (Gas sealed within a tube with brewster windows
e clectric arc in tube causes glowing of gas
¢ glow indication of pumping

Most Common Types

e Atomic (atoms not ionized) eg He-Ne 632 nm (deep Red)

e Power ~1-40 mW

e Nobel Gas Ion Lasers eg. Argon 514/488 nm (Green) to UV
e Power 10mW — 100 W

e Molecular Lasers: CO, 10.6 micorns (Far IR)

e pulsed 50 nsec >100J/pulse

e Excimer Lasers (UV range XeF 350 nm to F2 (157 nm)
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Fig. 2.25 Schematic construction of a low-power gas laser such as the
helium—neon laser. The load resistor serves to limit the current once
the discharge has been initiated.



Argon & Krypton Laser

i Argon & Krypton Laser
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Solid State Lasers
e Was first type of laser (Ruby 1960)
e Uses a solid matrix or crystal carrier
e cg Glass or Sapphire
e Doped with transition metal or rear earth ions
e ¢g Chromium (Cr) or Neodynmium (Nd)
e Mirrors at cavity ends
e Typically pumped with light
e Most common a Flash lamp
e Light adsorbed by doped ion, emitted as laser light
e Mostly operates in pulsed mode
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Figure 8-4 Schematic of solid laser—for example, ruby



Most Commn Nd: YAG Lasers

¢ Dope Neodynmium (Nd) into material most common
e Most common Yttrium Aluminum Garnet - YAG:

Y3Al501,
e Hard brittle but good heat flow for cooling
e Next common is Yttrium Lithium Fluoride: YLF

YLiF,
e Stores more energy, good thermal characteristics
¢ Nd in Glass stores less energy but easy to make
e Generally pulsed lasers: pulses from 2 nsec — 10’s msec
e Powers from microJ/pulse to > 10* J/pulse
¢ Can be run in CW mode also (less efficient)
e Power from mW to ~10W
e Can change to different wavelengths with non-linear crystals
e Get 2" Harmonic (533 nm) (green common)
e 3" Harmonic (544 nm), 4™ harmonic (266 nm) and 5™( 213 nm)

TABLE 22.1 Optical Characteristics of Major Nd Hosts for 1-um Line

Wavelength, Cross section, Linewidth,
Material nm x 107%° e¢m nm Lifetime, ps
YLF* 1047 a7 —_ 480
1053 26
Phosphate 1054 4.0-4.2 28 290-330
glass
GSGG 1061 11 — 222
Silicate glass 1061-1062 2.7-2.9 19-22 340
YAG 1064 34 0.45 244

*YLF is a birefringent material with different refractive indexes for light of different linear
polarizations; wavelength depends on the polarization.



Semiconductor Lasers
e Semiconductors were pumped by lasers or e-beams
e First diode types developed in 1962:
e Modified form of Light Emitting Diodes
e Must use Direct Bandgap Materials:
eg III-V or I1I-VI compounds
e Most common are GaAs, AlAs, InP, InAs combinations
e Si is an indirect bandgap material (except spongy Si)
¢ Indirect materials must emit an acoustic package
(phonon) during transition
e Very inefficient
¢ Direct band: highly efficient
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FIG. .6 Relationship of F-k for real solids: (a) silicon iwhich has an indirect bandgap) and (1) gallium
arsenide which has a direct bandgap). The figure shows the conduction and valence bands and the energy
gap E, between them. Note that (i) k is specified in different crystallographic directions to the left and righe,

and (i) there are holes present with different effective masses (sections 2.2.1 and 2.3).
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Simple Diode Laser
e Abrupt junction of P doped and N doped regions
e Emission confined to junction area
e Mirrors created by cleaving rods
e Uses crystal planes to create smooth mirrors (change in n mirrors)
e Highly Ellipitical emission: 1x50 microns
e Homojunction where first type of laser diodes
e Homojunction: materials the same on both sides of the Junction
e Hetrojunction better: P and N materials different
e Typical powers ImW-40 mW
¢ Typical wavelengths 830 nm (GaAs), 670 nm (Red)
e Many now in Green and into Violet/UV
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Figure 11.11 The radiation field of a semiconductor laser.



Monolithic Array Lasers
e Single strip lasers limited to 200 mW
e Many Laser strips edge emitters
e Bars with up to 200 strips produced
e 50 W power achieved
e 20: 10 micron wide strips on 200 micron centers
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Figure 18.9 Monolithic array of diode laser stripes. (Courtesy of Spectra Diode Labora-
tories.)



Human Eye
e Human eye is a simple single lens system
e Crystalline lens provide focus
e Cornea: outer surface protection
e Iris: control light
e Retina: where image is focused
e Note images are inverted
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FIGURE 10A
A cross-sectional diagram of a human eye, showing the principal optical com-
ponents and the retina.



