ENSC 220 Lab Tutorial

Fall 2008

Credits: Dr. Ash Parameswaran, notes Dr. Atousa Hajshirmohammadi, layout

ENSC LAB (9000 level)

Component rack

Lab bench

Function generator

Bread board

The red lines indicate holes that are electrically connected

Neatly done wiring

Poorly done wiring

If you wire your circuit this manner, please do not bring it to us for troubleshooting.

Dual power supply

Voltage or current display

Voltage/resistance measurement

Power switch

Digital multimeter (current measurement)

Current measurement

DMM specs

Specification and accuracy

Meter accuracy

DC Volts \pm (0.1% of the reading + 1 digit)

DC Amps \pm (0.3% of the reading + 1 digit)

Resistance \pm (0.2% of the reading + 1 digit)

What does the +1 digit mean?

Range	Display
200 mV	00.0
2 V	0.000
20 V	0.00
200 V	00.0

If in a circuit, we read 0.812 Volts using the 2 V range setting: The accuracy is \pm (0.1% of the reading + 1 digit) Hence, the accuracy is \pm 0.000812 V However the meter can only display 3 digits beyond the decimal point (2V range) Therefore, actual reading accuracy is \pm 0.001 V For this measurement, the value is $[0.812 \pm 0.001]$ V 0.813 V 0.811 V¹³

How to set-up power supply: dual supply (source)

Set current limit for both sides as already described

Sample experiment

First level experiment/calculation

Measure the resistance using an Ohm-meter

2 kOhm range, therefore the value is 0.470 ± 0.001 kOhm

Max value = 471 Ohm, Min value = 469 Ohm

17

First level experiment/calculation (continued)

Measure the voltage of the supply

2 V range, therefore the value is 0.500 ± 0.001 V Max value = 0.501 V, Min value = 0.499 V

Measure current

2 mA range, therefore the value is 0.877 ± 0.003 mA Max value = 0.880 mA, Min value = 0.874 mA Our theoretical value is = 1.063829 mA Something strange is happening here!

