Recap:

We considered the two-dimensional case: an RLC circuit with two state variables.
State Equations:

$$
\begin{aligned}
& \frac{d}{d t}\binom{i_{L}}{v}=\left(\begin{array}{cc}
-R / L & -1 / L \\
1 / C & 0
\end{array}\right) \cdot\binom{i_{L}}{v_{C}}+\binom{1 / L}{0} v_{S}(t) \\
& \frac{d x}{d t}=A x+b \leftarrow \text { canonical form }
\end{aligned}
$$

Case 1: $s_{1}+s_{2}$, real and negative.
Case 2: $s_{1}=s_{2}$
Case 3: $s_{1} \neq s_{2}$, complex conjugate
Initial condition: $\quad v_{c}\left(0^{-}\right)=v_{c}\left(0^{+}\right) ; v_{c}\left(0^{+}\right)=0$

$$
i_{L}\left(0^{-}\right)=i_{L}\left(0^{+}\right) ; i_{L}\left(0^{+}\right)=0
$$

Hence:

$$
\text { Case 1: } v_{C}(t)=v_{c h}(t)+v_{c p}(t)
$$

Where $v_{c h}(t)=K_{1} e^{s_{1} t}+K_{2} e^{s_{2} t}$ satisfies the differential equation and $v_{c p}$ depends on the exciting function.

Canonical form of the state equation:

$$
\frac{d}{d t}\binom{i_{L}}{v_{C}}=\left(\begin{array}{cc}
-R / L & -1 / L \\
1 / C & 0
\end{array}\right) \cdot\binom{i_{L}}{v_{C}}+\binom{1 / L}{0} v_{s}(t)
$$

$v_{s}(t)=V_{b} \cdot u(t)$, where $u(t)$ is the unit step function.

Assume that $i_{L p}(t)$ and $v_{C p}(t)$ are also constants.

Hence:

$$
\binom{0}{0}=\left(\begin{array}{cc}
-R / L & -1 / L \\
1 / C & 0
\end{array}\right) \cdot\binom{A}{B}+\binom{1 / L}{0} Y_{b}
$$

Note: We use A and B as constants here to differentiate them from K_{1} and K_{2} in $v_{c h}(t)$.

$$
\begin{gathered}
-\frac{R}{L} A-\frac{1}{L} B+\frac{1}{L} V_{b}=0 \\
\frac{1}{C} A=0 \Rightarrow A=0 \\
B=V_{b}
\end{gathered}
$$

Hence:

$$
\begin{aligned}
& v_{C}(t)=K_{1} e^{s_{1} t}+K_{2} e^{s_{2} t}+V_{b} \\
& \frac{d v_{C}(t)}{d t}=K_{1} s_{1} e^{s_{1} t}+K_{2} s_{2} e^{s_{2} t}+V_{b}+\phi
\end{aligned}
$$

Can we find $\frac{d v_{C}(t)}{d t}$ at $t=0$?
This value can be found from the DE equation

$$
\begin{aligned}
& \frac{d}{d t}\binom{i_{L}}{v_{C}}_{t=0}=\left(\begin{array}{cc}
-R / L & -1 / L \\
1 / C & 0
\end{array}\right) \cdot\binom{i_{L}}{v_{C}}_{t=0}+\binom{1 / L}{0} v_{s}(t)_{t=0} \\
& {\frac{d v_{C}}{d t}}_{t=0^{+}}=\frac{1}{L} i_{L}(0+) \\
& {\frac{d v_{C}}{d t}}_{t=0^{+}}=0
\end{aligned}
$$

Hence,

$$
\begin{aligned}
v_{C}(t)_{t=0^{+}}= & K_{1}+K_{2}+V_{b} \\
& K_{1}+K_{2}+V_{b}=0 \\
{\frac{d v_{C}}{d t}}_{t=0^{+}}= & K_{1} s_{1}+K_{2} s_{2} \\
& K_{1} s_{1}+K_{2} s_{2}=0
\end{aligned}
$$

$$
\left.\begin{array}{c}
K_{1}+K_{2}=-V_{b} \\
K_{1} s_{1}+K_{2} s_{2}=0
\end{array}\right\} \text { multiply the first equation by }-s_{2}
$$

$$
-K_{1} s_{2}-K_{2} s_{2}=V_{b} s_{2}
$$

$$
K_{1} s_{1}+K_{2} s_{2}=0
$$

$$
K_{1}\left(s_{1}-s_{2}\right)=V_{b} s_{2}
$$

$$
K_{1}=\frac{V_{b} s_{2}}{s_{1}-s_{2}} \quad s_{1,2}=-\frac{R}{2 L} \pm \sqrt{\left(\frac{R}{2 L}\right)^{2}-\frac{1}{L C}}
$$

$$
s_{1}-s_{2}=2 \sqrt{\left(\frac{R}{2 L}\right)^{2}-\frac{1}{L C}}
$$

$$
K_{1}=\frac{V_{b}}{2 \sqrt{\left(\frac{R}{2 L}\right)^{2}-\frac{1}{L C}}} \cdot\left(-\frac{R}{2 L}-\sqrt{\left(\frac{R}{2 L}\right)^{2}-\frac{1}{L C}}\right)
$$

Then,

$$
K_{2}=-\frac{s_{1}}{s_{2}} \cdot K_{1}
$$

and

$$
v_{C}(t)=K_{1} e^{s_{1} t}+K_{2} e^{s_{2} t}+V_{b}
$$

The second state variable $i_{L}(t)$ can be found from the DE:

$$
\frac{d v_{c}}{d t}=\frac{1}{C} i_{L}
$$

$i_{L}=\frac{1}{C} \frac{d v_{C}}{d t}$
$i_{L}=\frac{1}{C}\left(K_{1} s_{1} e^{s_{1} t}+K_{2} s_{2} e^{s_{2} t}\right)$

Where K_{1} and K_{2} have already been found for $v_{C}(t)$.

Note: $\quad v_{C}\left(0^{+}\right)=0$

$$
i_{L}\left(0^{+}\right)=0
$$

$$
\frac{d v_{C}}{d t_{t=0}}=0 \text { only because } \quad \frac{d v_{C}}{d t}=\frac{1}{C} i_{L}(t)
$$

and

$$
i_{L}(0+)=0
$$

In other circuits, we may have:

$$
{\frac{d v_{C}}{d t}}_{t=0} \neq 0
$$

$\frac{d i_{L}}{d t}{ }_{t=0}=-\frac{R}{L} \cdot v_{L}\left(0^{+}\right)-\frac{1}{L} \cdot v_{C}\left(0^{+}\right)+\frac{1}{L} v_{C}\left(0^{+}\right)$
$\frac{d i_{L}}{d t_{t=0^{+}}}=\frac{V_{b}}{L}$ only because of the DE (constants, parameters, excitation)
In general: $\quad \frac{d v_{C}}{d t}{ }_{t=0^{+}}$and $\frac{d i_{L}}{d t_{t=0^{+}}} \neq 0$ even though $v_{C}\left(0^{+}\right)=i_{L}\left(0^{+}\right)=0$
These values depend on:

- DE: circuit topology
- circuit parameters
- excitation (sources)
- initial conditions: $v_{C}\left(0^{-}\right), i_{L}\left(0^{-}\right)$

Furthermore: $\frac{d v_{C}}{d t}{ }_{t=0^{+}} \neq \frac{d v_{C}}{d t} t_{t=0^{-}}$

$$
{\frac{d i_{L}}{d t}}_{t=0^{+}} \neq \frac{d i_{L}}{d t}{ }_{t=0^{-}}
$$

No continuity of these function is guaranteed!

Digression:

Note: One can also solve the system of two $1^{\text {st }}$ order DE's by combining them into one $2^{\text {nd }}$ order DE.

In the case of the RLC circuit that we analyzed:

$$
\begin{aligned}
& \frac{d i_{L}}{d t}=-\frac{R}{L} \cdot i_{L}-\frac{1}{L} v_{C}+\frac{1}{L} \cdot v_{s}(t) \\
& \frac{d v_{C}}{d t}=\frac{1}{C} \cdot i_{L} \quad \Rightarrow \quad i_{L}=C \frac{d v_{C}}{d t} \\
& C \frac{d^{2} v_{C}}{d t^{2}}=-\frac{R}{L} \cdot C \frac{d v_{C}}{d t}-\frac{1}{L} \cdot v_{C}+\frac{1}{L} \cdot v_{s}(t) \\
& \text { Or: } L C \frac{d^{2} v_{C}}{d t}+R C \cdot \frac{d v_{C}}{d t}+v_{C}=v_{s}(t)
\end{aligned}
$$

$2^{\text {nd }}$ order DE:
Characteristic equation:

$$
\begin{aligned}
& L C s^{2}+R C s+1=0 \\
& s_{1 / 2}=-\frac{R}{2 L} \pm \sqrt{\left(\frac{R}{2 L}\right)^{2}-\frac{1}{L C}}
\end{aligned}
$$

Again: $v_{C}(t)=K_{1} e^{s_{1} t}+K_{2} e^{s_{2} t}+v_{c p}(t)$
where $K_{1} e^{s_{1} t}+K_{2} e^{s_{2} t}$ is $v_{c h}(t)$, the homogenous solution.
Let us look more closely at the $2^{\text {nd }}$ order DE:

$$
\begin{gathered}
L C \frac{d^{2} v_{C}}{d t^{2}}+R C \cdot \frac{d v_{C}}{d t}+v_{C}=v_{s}(t) \\
v_{s}(t)=V_{b} u(t) \\
\equiv V_{b} \text { for } t \geq 0
\end{gathered}
$$

In equilibrium (steady state), we expect that:
$v_{C}(t) \equiv$ constant because the driving force (source function) is constant:
$v_{C}(t)=A$

$$
\begin{aligned}
& \frac{d v_{C}}{d t}=0 ; \frac{d^{2} v_{C}}{d t^{2}}=0 \text { Hence: } A=V_{b} \\
& v_{C}(t)_{t \rightarrow \infty}=V_{b}
\end{aligned}
$$

As expected! Look at the circuit:

$v_{s}(t)=V_{b} \leftarrow D C$ source for $t \geq 0$
$v_{C}(t) \rightarrow V_{b}$

For the current flowing through the inductor

$$
\frac{d i_{L}}{d t}=-\frac{R}{L} \cdot v_{L}-\frac{1}{L} \cdot v_{C}+\frac{1}{L} \cdot v_{s}(t)
$$

In steady state:

$$
\frac{d i_{L}}{d t}=0 ; i_{L}=0 \quad v_{C}=V_{b} \leftarrow \text { the particular solution }
$$

You can deduct many of these variables and their value at $t=0^{+}$and $t \Rightarrow \infty$ by looking at the circuit.

Such predictions can be done for well known source functions such as:

- DC sources: $V_{b} u(t)=\left\{\begin{array}{l}0 \quad t<0 \\ V_{b} t \geq 0\end{array}\right.$
- AC sources: $V_{s} \sin (\omega t+\theta)$

Graphical representations of the responses:
Case 1: $s_{1} \neq s_{2}$: real numbers

$$
v_{C}(t)=K_{1} e^{s_{1} t}+K_{2} e^{s_{2} t}+V_{b}
$$

Case 2: $s_{1}=s_{2}$: real and negative

Case 3: $s_{1} \neq s_{2}$: complex conjugate

Damping:

Case 1: $s_{1} \neq s_{2}$: real and negative

$$
\begin{aligned}
& v_{C h}(t)=\left(K_{1}+K_{2} t\right) e^{s_{1} t} \\
& \quad \text { overdamped }
\end{aligned}
$$

Case 2: $s_{1}=s_{2}$: real, negative
critically damped

It is not possible to distinguish between overdamped and critically damped responses by merely looking at the waveforms.

Case 3: $s_{1} \neq s_{2}$: complex conjugate damped

Note: if $R=0$: undamped

$$
\left|s_{1}\right|=\left|s_{2}\right|
$$

e.g., an LC circuit that sustains oscillations due to initially stored energy

Graphical representation:
Undamped:

Underdamped

Overdamped

Critically damped

