Recap:
We considered the two-dimensional case: an RLC circuit with two state variables.

State Equations:
] -R/L —-1/L)\(i 1/L
i K = ) K + s (1)
dt\ v 1/C 0 Ve 0

ﬂ = Ax+ b < canonical form

dt

Case 1: s, +s,, real and negative.
Case 2: s, =5,
Case 3: s, #5,, complex conjugate

Initial condition: v.(07)=v,(0");v,(0")=0
i,(07)=i,(07);i,(07)=0

Hence:
Case I: v (1) =v,, (1) + v, (1)

Where v, (1) = K,e™ + K,e™ satisfies the differential equation and v,, depends on the

exciting function.

Canonical form of the state equation:
] —-R/L —-1/L\(i /L
LA 1 o
dt\ ve 1/C 0 Ve 0
v.(t)=V, -u(t), where u(t) is the unit step function.
Assume that 7, (¢) and v, (¢) are also constants.
Hence:
01_ —R/L —l/L) A]Jr l/L}/
o) {vc o J{B!'|o ]

AN
Note: We use A and B as constants here to differentiate them from K; and K, in v, (7).

—EA—lB+lVb:O
L L L

lA=0:>A:O

C

B=V,



Hence:
ve(t)=Ke" +K,e™ +V,
dv (1)
Cdr

Can we find ?at t=07?

st Syt
=K sie" +K,s,e” +V, +¢

This value can be found from the DE equation

d(i,) _(-R/L -1/L\(4i N
dt | v, t:O_ 1/C 0 ve |,
dv, 1.

e =2 (0+

dt =0" L L( )

v

dt t=0"

Hence,
Vc(t),:(p =K, +K,+V,
K +K,+V, =0
dv,
dt -

=Ks,+K,s,
K.s,+K,s,=0

K +K,=-V,
K.s,+K,s,=0

- K5, —K,s,=V,s,
Ks,+K,s,=0
K (s,=5,)=V,s,

1/L
0

}s (t)z:O

} multiply the first equation by —s,
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Then,

and
ve(®)=Ke" +K,e™ +V,

The second state variable i, () can be found from the DE:

dv, —li

d C*
. lav,
i =——=x
C dt

i = %(Klsles” + K2s2e52’)

Where K, and K, have already been found for v.(¢).

Note: v.(07)=0

i,(0)=0
dv, dv 1
=0 only because —C=—i (¢
dt = Y d C A0
and
i,(0+)=0
In other circuits, we may have:
dv, 40
df t=0
di, R | | N
— ==—v,(0")=—v.(0")+—v.(0
L =0 0+ v (0)
di, v, o
> =—= only because of the DE (constants, parameters, excitation)
t =0
In general: v and % #0 even though v.(0")=i,(07)=0
t =0* t =0"

These values depend on:
e DE: circuit topology
e circuit parameters

e cxcitation (sources)



e initial conditions: v.(07),i,(07)

dv dv
Furthermore: c = c

dt -0+ dt -0

d, L di,

df t=0" dt t=0"

No continuity of these function is guaranteed!
Digression:
Note: One can also solve the system of two 1* order DE’s by combining them into one

2™ order DE.

In the case of the RLC circuit that we analyzed:

di, R . 1 1

— =0, =V +— V(!

d L " L° L 0

di:llL = iL: d&

da C dt

d*v, R _dv. 1 1
=—— C—~X——v. +—v (¢

dr* L dr L ° L (1)
2

or: eV s pe ey =y (1)
dt dt ‘

2™ order DE:

Characteristic equation:
LCs*+RCs+1=0

2
o Ry RY L
2L 2L LC

Again: v.(t) = Ke" + K,e™ +v,, (1)

t

where K, e" +K,e™ is v, (t), the homogenous solution.

Let us look more closely at the 2" order DE:

d*v dv
LC—E+RC-—E4v. =v (¢
dr? d € 30
v, (1) =V,u(t)
=V, fort20

In equilibrium (steady state), we expect that:
v (¢) = constant because the driving force (source function) is constant:

ve(t)=4



2

e =0; d ‘;C =0 Hence: A=V,
dt dt
VC (t)t—wc = Vb

As expected! Look at the circuit:

vC L

v,(t) =V, < DC source fort =0
VC(t) - Vb

For the current flowing through the inductor

di, R 1 1
— ==V, —— Vo +—V (I
d L " L ° L 0

In steady state:
di,

o 0;i,=0 ve =V, <« the particular solution
t

You can deduct many of these variables and their value at 1 = 0" and ¢ = by looking at
the circuit.

Such predictions can be done for well known source functions such as:
0 t<0

V,t=20
e AC sources: V, sin(wt + 6)

e DC sources: V,u(t) = {



Graphical representations of the responses:

Case 1: s, # 5, real numbers
ve(®) =K e" +K,e™ +V,

Case 2: s, = s,: real and negative
ve(®)=(K, +K,t)e" +V,




Case 3: 5, # 5, : complex conjugate

Damping:
Case 1: s, # 5, : real and negative

v () = (K, + K,t)e™
overdamped

Case 2: s, = s, : real, negative
critically damped

It is not possible to distinguish between overdamped and critically damped responses by
merely looking at the waveforms.

Case 3: 5, # 5, : complex conjugate
damped

Note: if R=0: undamped
|s,[ = s,

e.g., an LC circuit that sustains oscillations due to initially stored energy



Graphical representation:

Undamped:
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