
Recap: 
We considered the two-dimensional case: an RLC circuit with two state variables. 
 
State Equations: 
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Case 1: ,21 ss +  real and negative. 
Case 2: 21 ss =  
Case 3: 21 ss ≠ , complex conjugate 
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Hence: 
 Case 1: )()()( tvtvtv cpchC +=  

Where tsts
ch eKeKtv 21

21)( +=  satisfies the differential equation and cpv  depends on the 
exciting function. 
 
Canonical form of the state equation: 
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)()( tuVtv bs ⋅= , where )(tu  is the unit step function. 

 
Assume that )(tiLp  and )(tvCp  are also constants. 
 
Hence:  
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Note: We use A and B as constants here to differentiate them from K1 and K2 in )(tvch . 
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Hence: 
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Can we find 
dt
tdvC )( at 0=t ? 

 
This value can be found from the DE equation 
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Hence,  
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Then, 
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The second state variable )(tiL can be found from the DE: 
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Where 1K and 2K  have already been found for )(tvC . 
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In other circuits, we may have: 
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These values depend on: 
• DE: circuit topology 
• circuit parameters 
• excitation (sources) 



• initial conditions: )0(),0( −−
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Furthermore: 
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No continuity of these function is guaranteed! 
 
Digression: 
Note: One can also solve the system of two 1st order DE’s by combining them into one 
2nd order DE. 
 
In the case of the RLC circuit that we analyzed: 
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2nd order DE: 
Characteristic equation: 
 012 =++ RCsLCs  
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Again: )()( 21
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21 +  is )(tvch , the homogenous solution. 

 
Let us look more closely at the 2nd order DE: 
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In equilibrium (steady state), we expect that: 

≡)(tvC  constant because the driving force (source function) is constant: 
 

AtvC =)(  



0;0 2

2

==
dt
vd

dt
dv CC   Hence:  bVA =  

 
btC Vtv =∞→)(  

 
As expected!  Look at the circuit: 
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For the current flowing through the inductor 
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In steady state: 
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You can deduct many of these variables and their value at += 0t and ∞⇒t by looking at 
the circuit. 
 
Such predictions can be done for well known source functions such as: 
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Graphical representations of the responses: 
 
Case 1: 21 ss ≠ : real numbers 
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Case 2: 21 ss = : real and negative 
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Case 3: 21 ss ≠ : complex conjugate 

 
 
 
Damping: 
Case 1: 21 ss ≠ : real and negative 
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overdamped 

 
Case 2: 21 ss = : real, negative  

critically damped 
 
It is not possible to distinguish between overdamped and critically damped responses by 
merely looking at the waveforms. 
 
Case 3: 21 ss ≠ : complex conjugate 
    damped 
 
Note: if 0=R :  undamped 
  21 ss =  
e.g., an LC circuit that sustains oscillations due to initially stored energy 
 



Graphical representation: 
 
Undamped: 

 
 
Underdamped 
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Critically damped 

 


