SIMON FRASER UNIVERSITY SCHOOL OF ENGINEERING SCIENCE

Summer 2006 ENSC 320: ELECTRIC CIRCUITS II

Midterm Examination No. 1 June 23, 2006

Duration: 60 minutes. Attempt all four problems. Questions are **not** equally weighted. Closed book and closed notes. Calculators, PDAs, laptops, and wireless phones are not permitted.

1. (40 points)

The switch in the circuit shown in Figure 1 has been closed for a very long time and the capacitor voltage has reached a steady-state value. The switch opens at t = 0 and remains open for 100 μ s, at which instant it closes again and remains closed.

- Write the differential equation describing the circuit with switch open.
- Find the time constant of the circuit with switch open.
- Find capacitor voltage v(t) for $0 < t \le 100 \ \mu s$.
- Write differential equation describing the circuit with switch closed.
- Find the time constant of the circuit with switch closed.
- Find capacitor voltage v(t) for $t \ge 100 \ \mu s$
- Sketch the waveform for v(t).

2. (20 points)

A series RLC circuit is shown in Figure 2.

- Write the state equation in matrix form.
- Find the natural frequencies of the circuit.
- State three possible cases of the voltage/current waveforms depending on the values of circuit parameters.

3. (20 points)

Find Laplace transform of the signals sketched in Figure 3.

4. (20 points)

Find the inverse Laplace transform of the following functions of s: (Use simplifications and the transform properties to simplify calculations.)

•
$$F(s) = \frac{s^2 + 2s + 2}{s(s+2)^2}$$

•
$$F(s) = \frac{2se^{-2s}}{(s+1)(s+3)}$$

