SIMON FRASER UNIVERSITY SCHOOL OF ENGINEERING SCIENCE

Spring 2008 ENSC 320: ELECTRIC CIRCUITS II

Midterm Examination No. 1

Wednesday, February 13, 2008

Duration: 50 minutes. Attempt all four problems. Questions are **not** equally weighted. Closed book and closed notes. Calculators, PDAs, laptops, and wireless phones are not permitted.

1. (30 points)

Find the response $v_{out}(t)$ for the ideal op amp circuit shown in Figure 1:

- Find the response $v_{out}(t)$ in terms of $v_{in}(t)$, R, and C.
- Based on your response, state the function that this circuit realizes.
- Suppose that $v_{in}(t) = cos(250t)$, $R = 4k\Omega$, and $C = 1\mu F$. The circuit is initially relaxed. Find $v_{out}(t)$.

2. (30 points)

A series RLC circuit is shown in Figure 2.

- Write the state equation in matrix form.
- Find the natural frequencies of the circuit.
- State three possible cases of the voltage/current waveforms depending on the values of circuit parameters.

3. (20 points)

Find Laplace transform of the signal sketched in Figure 3.

4. (20 points)

Find the inverse Laplace transform of the following function of s:

$$F(s) = \frac{3s+1}{(s+2)(s^2+4s+8)}.$$

(Use simplifications and the transform properties to simplify calculations.)

