SIMON FRASER UNIVERSITY SCHOOL OF ENGINEERING SCIENCE

Summer 2007 ENSC 320: ELECTRIC CIRCUITS II

Midterm Examination No. 2

July 11, 2007

Duration: 50 minutes. Attempt all three problems. Questions are **not** equally weighted. Closed book and closed notes. Calculators, PDAs, laptops, and wireless phones are not permitted.

- 1. (30 points) For the ideal op amp circuit shown in Fig. 1:
 - Find the transfer function in terms of R_1 , R_2 , and C.
 - If it is desired to obtain

$$H(s) = \frac{s+4}{s+2}$$

with $C = 1 \ \mu F$, then find R_1 and R_2 .

- Find the circuit's step response.
- 2. (50 points) Consider the circuits shown in Fig. 2, where $R_1 = 50 \ \Omega$, $R_2 = 200 \ \Omega$ and $C = 2.5 \ mF$.
 - Find its transfer function.
 - Let $v_{in}(t) = 10e^{-2t}u(t)$ V and $v_c(0_-) = 4$ V.
 - Find the zero-state response, the zero-input response, and the complete response
 - Find the forced response and the natural response.
 - Find the steady-state response and the transient response.
 - If $v_{in}(t) = 10e^{-10t}u(t) V$ and $v_c(0) = 0 V$, is the forced response well defined. Justify your answer.
- 3. (20 points) Consider the circuits shown in Fig. 3, where $R = 0.25 \ \Omega$ and C = 1 F.
 - Find the transfer function H(s) and the impulse response h(t).
 - If $i_{in}(t) = 3e^{-t}u(t) A$, find $v_c(t)$ using the convolution integral.

6. THE INVERSE LAPLACE TRANSFORM

ABLE 13.1 Laplace Transform Pairs		
m number	f(t)	$\mathcal{L}[f(t)] = F(s)$
1	<i>K</i> δ(<i>t</i>)	K
2	Ku(t) or K	<u>K</u> s
3	r(t)	$\frac{1}{s^2}$
4	$t^n u(t)$	$\frac{n!}{s^{n+1}}$
5	$e^{-at}u(t)$	$\frac{1}{s+a}$
6	$te^{-at}u(t)$	$\frac{1}{(s+a)^2}$
7	$t^n e^{-\alpha t} u(t)$	$\frac{n!}{(s+a)^{n+1}}$
8	$\sin(\omega t)u(t)$	$\frac{\omega}{s^2 + \omega^2}$
9	$\cos(\omega t)u(t)$	$\frac{s}{s^2 + \omega^2}$
10	$e^{-\alpha t}\sin(\omega t)u(t)$	$\frac{\omega}{(s+a)^2 + \omega^2}$
11	$e^{-at}\cos(\omega t)u(t)$	$\frac{s+a}{(s+a)^2+\omega^2}$
12	$t \sin(\omega t) u(t)$	$\frac{2\omega s}{(s^2+\omega^2)^2}$
13	$t \cos(\omega t)u(t)$	$\frac{s^2 - \omega^2}{(s^2 + \omega^2)^2}$
14	$\sin(\omega t + \phi)u(t)$	$\frac{s\sin(\phi) + \omega\cos(\phi)}{s^2 + \omega^2}$
15	$\cos(\omega t + \phi)u(t)$	$\frac{s\cos(\phi) - \omega\sin(\phi)}{s^2 + \omega^2}$
16	$e^{-dt}[\sin(\omega t) - \omega t \cos(\omega t)]u(t)$	$\frac{2\omega^3}{[(s+a)^2 + \omega^2]^2}$
17	$te^{-at}\sin(\omega t)u(t)$	$2\omega \frac{s+a}{[(s+a)^2+\omega^2]^2}$
18	$e^{-at}\left[C_1\cos(\omega t) + \left(\frac{C_2 - C_1a}{\omega}\right)\sin(\omega t)\right]u(t)$	$\frac{C_1s + C_2}{(s+a)^2 + \omega^2}$
19	$2\sqrt{A^2+B^2}e^{-at}\cos\left[\omega t-\tan^{-1}\left(\frac{B}{A}\right)\right]$	$\frac{A+jB}{s+a+j\omega} + \frac{A-jB}{s+a-j\omega}$
20	$2\sqrt{A^2 + B^2} te^{-at} \cos\left[\omega t - \tan^{-1}\left(\frac{B}{A}\right)\right]$	$\frac{A+jB}{(s+a+j\omega)^2} + \frac{A-jB}{(s+a-j\omega)^2}$